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Approximate representation of signals

» Why approximate signals?

Aggressive signal acquisition

Acquired signal exists in very high dimensional space (RN)
High memory required for storage
High computational costs in signal processing

Solution:

Represent acquired signal in a lower dimensional space (RM) without losing
much information about the signal.

Need (¢, A)
¢ X 2 Xeoded (encoder)

A: Xcoded 2 Xreconstructed (decoder)

Approximation/reconstruction error = X — X econstructed = X — A($X)



Approximate representation of signals

» Goal:
For given signal class U ¢ RN |, design (¢,A) such that:

Encoder ¢ and decoder A should be easy to implement
Linear encoders (¢ is an m x N matrix)
Decoders (iterative/recursive, linear filters, greedy algorithms)

Encoder ¢ should be non adaptive with respect to input signal.

Approximation/reconstruction error should be bounded

€ = X — Xeconstructed
|| e || <B for || .|| of interest.



Approximate representation of signals

» How to analyze the performance of (¢,A) ?

Instantaneous approximation error:
E(x, U) = || x-A(px) || forsome || .|| defined on RN

Average approximation error:
E(U) = j [x = A(px)| P(x)dx
xeU
Support recovery error:
E(x,U) = abs( [supp(x) N supp(A(¢x))| - [supp(x)| )

Best k-term approximation error:

Oy (X)=Ziensz.Hx—zH where X, ={xeR" :|x| <k}



Transform Coding

» Encoder ¢ :
Project X onto basis F(i) toobtainY : Y=F X
Retain top k coefficients of Y and corresponding index set T
Encoder output {Y, T}
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Transform Coding

» Encoder ¢ :
Project X onto basis F(i)toobtainY : Y=F X

Retain top k coefficients of Y and corresponding index set T
Encoder output {Y, T}

» Decoder A :
Generate Y such that: Y, =Y;forieT and Y,=0forieT"
Xreconstructed — F_ll

» Approximation error :
” X - Xreconstructed ” 2 = ”Y _XHZ = ” YTC ”2 - cjk(Y)

» Malin idea;

Change of basis such that signal energy is concentrated in a few
coefficients in new basis.



Transform Coding

» Inefficiencies in transform coding

Encoding process is adaptive
It is not known beforehand which coefficients to retain.
Top k index set T varies with input signal X

High computational costs during encoding
Computations in encoder scale with input signal dimension N
Top k index set T varies with input signal X



Transform Coding

» Inefficiencies in transform coding

Encoding process is adaptive
It is not known beforehand which coefficients to retain.
Top k index set T varies with input signal X

High computational costs during encoding
Computations in encoder scale with input signal dimension N
Top k index set T varies with input signal X

Question:

Since we retain only a few coefficients, is it possible to actually
compute only a few linear non adaptive measurements and
still retain necessary information about X?



Non adaptive linear encoders

» Encoder ¢ :
Project X onto n (<< N) random basis F(i) to obtain Y

Yo | T 7= Fl ______ X
Yo | | |:2 ______ X2
| Yn | nx1 - F” ______ JdnxN
Encoder outputy = ¢Xx «
Matrix ¢ is fixed (non adaptive) LN s

» Decoder A :
?7?

v

Reconstruction error :

” X = Xreconstructed ” 2 = ”X - A(‘»DX)”2

Does there exists a decoder such that reconstruction error is as good as transform coding ?
How small can n be ?



Non adaptive linear encoders

» Encoder ¢ :
Encoder output : y..; = @ Xpy1
@ is anx N matrix (n<<N)

» Decoder A :
?? (practically feasible)

» Reconstruction error : (As good as transform coding !)
For all x e RN,

e~ A(px)], <C,o (x)

C, is a constant independent of k and N
Want instance optimality of (¢, A)



Non adaptive linear encoders

» Problem Statement

Encodero: VY., = @ Xpy1
Decoder A ; ??

Reconstruction error :
Forall x e RN, |x—A(px)|, <C,ok (X)
C,is a constant independent of k and N

Question: Can we construct such (¢,A) ?



Non adaptive linear encoders

» Problem Statement

Encodero: VY., = @ Xpy1
Decoder A: 7?7
Reconstruction error :
Forall x e RN, |x—A(px)|, <C,ok (X)
C,is a constant independent of k and N

Question: Can we construct such (¢,A) ?

Compressed Sensing says YES !
Instance optimal (¢,A) exist for k-sparse signals.

If @ is chosen properly, perfect recovery of x can be guaranteed using
feasible decoding schemes.



Compressed Sensing Basics (1/6)

» Major work done by:
Candes, Romberg, Tao
Donoho
Baranuik, Rauhut and many more.

Problem Statement :
GivenY, reconstruct X
Simple measurement model:

Y =AX
Y.q -Mmeasurement vector

A - fat matrix (n << N)
X nx1 - Sparse vector with k non zero entries



Compressed Sensing Basics (2/6)

» Measurement model:

Yix1 = Anxn Xt [n << N, [IX]lo=K]

A\ has non trivial null space N(A)

Same Y can be caused due to infinitely many X
Which X to pick ?

Claim:

For unique k-sparse solution, N(A) should not contain any 2k or
less sparse non zero vector

N(A) N 5, =1{0} Null Space Property of order 2k

Construction of matrix A which satisfies NSP of order 2k is difficult.



Compressed Sensing Basics (3/6)

» Measurement model: Y, .1 = AN Xnxt

n<<N and |[X]|;=KkK
Let T c {1,2....N} is the supportsetof X, | T| <k
Compact measurement model:

Y = AX;

For unique solution, all k columns of sub matrix Ay must be
linearly independent for all possible index sets T.

For stable solution, Gram(A;) must be well conditioned. (Why ?)



Compressed Sensing Basics (4/6)

» Y= AX = ATXT (T is the support setof X, | T| <k)

» For stable solution:
(A; )'A; must be well conditioned for all index sets T.
A must satisfy RIP of order K

» Restricted Isometry Property (RIP)

Matrix A satisfies RIP of order K if there is a 9, in (0,1) such that
(1=5)[X[, < [|AX], < (1+50)]X],
holds for all X € 3,



Compressed Sensing Basics (5/6)

Y=AX = A X,

(T is the support set of X, | T| <k)

» For stable solution:
A must satisfy RIP of order K

» For unique k-sparse solution:

A must satisfy RIP of order 2K
RIP of order 2K = NSP of order 2K

» For stable solution via L-1 minimization:
A must satisfy RIP of order 3K



Compressed Sensing Basics (6/6)
Y=AX = A X;

(T is the support set of X, | T| <Kk)

» For stable, unique k-sparse solution:
A must satisfy RIP of order 2K

» Do random matrices satisfy RIP?

Theorem:

Let ¢ be a n x N random matrix whose entries @; are iid and drawn according to
a Gaussian distribution with variance = 1/n.

If n>Cs? (klog (%)— log (g)j for a constant C > 0. Then ¢ satisfies RIP of

order K and RIP constant o, < & with probability atleast 1-€.



Non adaptive linear encoders

» Coming back to original problem !

Encoder ¢ : Y. = @ Xpy1
Decoder A ; 7?7

Reconstruction error :
For all X € RN,HX—A((PX)HZ <C,ox (X)
C,is a constant independent of k and N

Question: Can we construct such (¢,A) ?
YES'! If ¢ satisfies RIP of order 3K and x is k-sparse.

What can we say about reconstruction error if X is not sparse?



Main Result

Encoder :

Yxt = @ Xnxa

@ is an n X N Gaussian random matrix
Variance of ¢; =1/n
n = c,klog(N/n)

Decoder :
A = minimum squared residual decoder

Reconstruction error :
There exists a high probability set Q(¢) < Q such that for all
P(Q(¢)) = 1- € such that for all w € Q(¢), we have

Hx(a)) —A(gax(a)))H2 <Coy (X(a)))

where Cis a constant independent of k and N.
We have instance optimality w.h.p.!



High Level Proof

Gaussian Random
Matrices

@ is an nxN Gaussian random matrix with variance = 1/n and n 2 c k log(N/k) ---- (1)
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RIP and
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For each x € RN, there exists a high probability set Q(x)cQ such that for

Existence of good all w € Q(x), we have
encoders w.h.p Hx — A(p(®) X)H2 <C,o (),

with C, =1 + 2C/(1-8) and A as the proposed decoder
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For each x € RN, there exists a high probability set Q(x)cQ such that for

Existence of good all w € Q(x), we have
encoders w.h.p Hx — A(p(®) X)H2 <C,o (),

with C, =1 + 2C/(1-8) and A as the proposed decoder

3

For every random matrix ¢ satisfying (1), there exists a high
probability set Q(¢) c Q such that for all w € Q(p), we have:

Instance optimality
w.h.p HX(CU) = A(gDX(a)))HZ <C,o(X),,

_______________________________ for some constant C, is a constant independent of k and N.




Proof: RIP and BDDness implies existence of encoders w.h.p

> (a) ¢ satisfies RIP of order 2K w.h.p.

> (b) For each x € RN, there exists a high probability set Q(X)cQ such that for all w € Q(X) , ¢(w)
. satisfies boundedness property** with respect to x and constant C

~

J

» Pick any arbitrary x € RN:
» Let T be the index set of k largest coefficients of x =>|x—x|, = o (x),

Q,: such that for w € Q, ¢@(w) satisfies RIP or order 2k with constant &
» o P(Q) 2 1-€

v

v

Q,(x-x7): such that for w € Q, @(w) satisfies boundedness probability for x-x;

with constant C.
» P(Q;(X-X1))=1-€

v

Let Q"= Q4 N Q,(X-X;), then P(Q’) 2 1-2e¢ (easy to show !)

Let ¢ be generated from )’

» Encoder outputy = ¢ X.

» Decoder output x* = A(Y) = arg ﬂin Hy_¢ZH2
zeR™, zozK

v

»  We work out the proof!



Proof: Existence of encoders w.h.p implies
instance optimality w.h.p

(For each x € RN, there exists a high probability set Q(x)cQ such that for
all w e Q(x), we have

x=Alp(@)x)], < Cyo (%),
with C, = 1 + 2C/(1-6) and A as the proposed decoder
N

» We work out the proof !



Summary

Encoder :

Yxt = @ Xnxa

@ is an n X N Gaussian random matrix
Variance of ¢; =1/n
n = c,klog(N/n)

Decoder :
A = minimum squared residual decoder

Reconstruction error :
There exists a high probability set Q(¢) < Q such that for all
P(Q(¢)) = 1- € such that for all w € Q(¢), we have

Hx(a)) —A(gax(a)))H2 <Coy (X(a)))

where Cis a constant independent of k and N.
We have instance optimality w.h.p.!



» BACKUP



Proposed decoder A(y) fory = @x

B Decoderdependsona.
B Decoderoutputisk-sparse.
B Decoderoutput minimizesthe squaredresiduali.e.

Aly) = argmin ||y —ezl,
zeRN, [lzllo=K



PROOF CONTINUED...
B Consider,
llx —x*lz = llx = x7llz + llxr— x*l2
= op (%), + llxr — x*|l2 =)
B Considersecondterm,
lxr —x*l; = (1 = &) Hlelxr —x9)ll2
=(1-8)lelx — xpll2 + llolx — x9)ll2):=
=1 -8 lly— expllz + lly — @x*ll2)
=(1-8)"Hy —expllz + Iy —exrll2)
=2(1-8)Helx—xpll2
=2C(1-8)Ux—xpll; = 2C(1 —8)top(x)y, i)

B From (i) and (ii),

2¢
[x — x*[|, = (1 + m) Ox (X)y,



