Compressed Sensing & best k-term approximation

Albert Cohen, Wolfgang Dahmen and Ronald Devore

Contents

- Approximate representation of signals
 - Transform Coding
 - Non adaptive linear encoders
- Quick review of compressed sensing
- Can CS be used to approximate non sparse signals in R^N?
 - What kind of performance can we expect ?
 - Proofs
- Conclusion

Approximate representation of signals

- Why approximate signals?
 - Aggressive signal acquisition
 - Acquired signal exists in very high dimensional space (R^N)
 - High memory required for storage
 - High computational costs in signal processing
 - Solution:
 - Represent acquired signal in a lower dimensional space (R^M) without losing much information about the signal.
 - Need (ϕ , Δ)
 - $\Box \quad \varphi: X \rightarrow X_{coded} \qquad (encoder)$
 - $\Box \quad \Delta: X_{coded} \rightarrow X_{reconstructed} \quad (decoder)$
 - □ Approximation/reconstruction error = $X X_{reconstructed} = X \Delta(\phi X)$

Approximate representation of signals

Goal:

- ▶ For given signal class $U \subset \mathbb{R}^N$, design (φ , Δ) such that:
 - Encoder φ and decoder Δ should be easy to implement
 Linear encoders (φ is an m x N matrix)
 Decoders (iterative/recursive, linear filters, greedy algorithms)
 - Encoder φ should be non adaptive with respect to input signal.
 - Approximation/reconstruction error should be bounded

 $\Box e = x - x_{reconstructed}$ $\Box || e || < B for || . || of interest.$

Approximate representation of signals

- How to analyze the performance of (φ, Δ) ?
 - Instantaneous approximation error:
 - $E(x, U) = || x \Delta(\varphi x) ||$ for some || . || defined on R^N
 - Average approximation error: • $E(U) = \int_{x \in U} ||x - \Delta(\varphi x)|| P(x) dx$
 - Support recovery error:
 - ► $E(x,U) = abs(|supp(x) \cap supp(\Delta(\phi x))| |supp(x)|)$
 - Best k-term approximation error: • $\sigma_K(X) = \inf_{z \in \Sigma_k} ||x - z||$ where $\sum_k = \{x \in \mathbb{R}^N : ||x||_0 \le k \}$

- Encoder φ :
 - Project X onto basis F(i) to obtain Y : Y = F X
 - Retain top k coefficients of Y and corresponding index set T
 - Encoder output {Y_T, T}

- Encoder φ :
 - Project X onto basis F(i) to obtain Y : Y = F X
 - Retain top k coefficients of Y and corresponding index set T
 - Encoder output {Y_T, T}
- Decoder Δ :
 - Generate <u>Y</u> such that: $\underline{Y}_i = Y_i$ for $i \in T$ and $\underline{Y}_i = 0$ for $i \in T^C$
 - $X_{reconstructed} = F^{-1}\underline{Y}$

- Encoder φ :
 - Project X onto basis F(i) to obtain Y : Y = F X
 - Retain top k coefficients of Y and corresponding index set T
 - Encoder output {Y_T, T}
- Decoder Δ :
 - Generate <u>Y</u> such that: $\underline{Y}_i = Y_i$ for $i \in T$ and $\underline{Y}_i = 0$ for $i \in T^C$
 - $X_{\text{reconstructed}} = F^{-1}\underline{Y}$
- Approximation error :
 - $||X X_{\text{reconstructed}}||_2 = ||Y \underline{Y}||_2 = ||Y_{T^c}||_2 = \sigma_k(Y)$
- Main idea:
 - Change of basis such that signal energy is concentrated in a few coefficients in new basis.

Inefficiencies in transform coding

- Encoding process is adaptive
 - It is not known beforehand which coefficients to retain.
 - Top k index set T varies with input signal X
- High computational costs during encoding
 - Computations in encoder scale with input signal dimension N
 - Top k index set T varies with input signal X

Inefficiencies in transform coding

- Encoding process is adaptive
 - It is not known beforehand which coefficients to retain.
 - Top k index set T varies with input signal X
- High computational costs during encoding
 - Computations in encoder scale with input signal dimension N
 - Top k index set T varies with input signal X

Question:

Since we retain only a few coefficients, is it possible to actually compute only a **few linear non adaptive measurements** and still retain necessary information about X?

• Encoder φ :

Project X onto n (<< N) random basis F(i) to obtain Y</p>

• Decoder Δ :

▶ ??

Reconstruction error :

- $|| \mathbf{x} \mathbf{x}_{\text{reconstructed}} ||_2 = || \mathbf{x} \Delta(\varphi \mathbf{x}) ||_2$
- Does there exists a decoder such that reconstruction error is as good as transform coding ?
- How small can *n* be ?

- Encoder φ :
 - Encoder output : $y_{nx1} = \varphi x_{Nx1}$
 - $\boldsymbol{\varphi}$ is a n x N matrix (n << N)
- Decoder Δ :
 - ?? (practically feasible)
- Reconstruction error : (As good as transform coding !)
 For all x ∈ R^N,

$$\left\|x - \Delta(\varphi x)\right\|_2 \le C_o \sigma_K(x)$$

- C_o is a constant independent of k and N
- Want instance optimality of (φ, Δ)

Problem Statement

- Encoder φ : $\mathbf{y}_{nx1} = \varphi \mathbf{x}_{Nx1}$
- Decoder Δ : ??
- Reconstruction error :
 - For all $\mathbf{x} \in \mathbb{R}^{N}$, $\| \mathbf{x} \Delta(\varphi \mathbf{x}) \|_{2} \leq C_{o} \sigma_{K}(\mathbf{x})$
 - C_o is a constant independent of k and N

Question: Can we construct such (φ, Δ) ?

Problem Statement

- Encoder φ : $\mathbf{y}_{nx1} = \varphi \mathbf{x}_{Nx1}$
- Decoder Δ : ??
- Reconstruction error :
 - For all $\mathbf{x} \in \mathbb{R}^{N}$, $\| \mathbf{x} \Delta(\varphi \mathbf{x}) \|_{2} \leq C_{o} \sigma_{K}(\mathbf{x})$
 - C_o is a constant independent of k and N

Question: Can we construct such (φ, Δ) ?

Compressed Sensing says YES !

- Instance optimal (φ , Δ) exist for k-sparse signals.
- If φ is chosen properly, perfect recovery of x can be guaranteed using feasible decoding schemes.

Compressed Sensing Basics (1/6)

- Major work done by:
 - Candes, Romberg, Tao
 - Donoho
 - Baranuik, Rauhut and many more.
 - Problem Statement :
 - Given Y, reconstruct X
 - Simple measurement model:

Y = AX

- Y_{nx1} measurement vector
- A $_{nxN}$ fat matrix (n << N)
- X $_{\mbox{\scriptsize Nx1}}\,$ sparse vector with k non zero entries

Compressed Sensing Basics (2/6)

Measurement model:

$$Y_{nx1} = A_{nxN} X_{Nx1}$$
 [n << N, ||X||₀ = k]

- A_{nxN} has non trivial null space N(A)
 - Same Y can be caused due to infinitely many X
 - Which X to pick ?

Claim:

For unique k-sparse solution, N(A) should not contain any 2k or less sparse non zero vector

 $N(A) \cap \sum_{2k} = \{0\}$ Null Space Property of order 2k

Construction of matrix A which satisfies NSP of order 2k is difficult.

Compressed Sensing Basics (3/6)

- Measurement model: $Y_{nx1} = A_{nxN} X_{Nx1}$
 - $n \ll N$ and $||X||_0 = k$
 - ▶ Let $T \subset \{1, 2, ..., N\}$ is the support set of X, $|T| \le k$
 - Compact measurement model:

$$Y = A_T X_T$$

- For unique solution, all k columns of sub matrix A_T must be linearly independent for all possible index sets T.
- ► For stable solution, Gram(A_T) must be well conditioned. (Why ?)

Compressed Sensing Basics (4/6)

• $Y = A X = A_T X_T$ (T is the support set of X, $|T| \le k$)

• For stable solution:

- $(A_T)^t A_T$ must be well conditioned for all index sets T.
- A must satisfy RIP of order K

Restricted Isometry Property (RIP)

• Matrix A satisfies RIP of order K if there is a δ_k in (0,1) such that

$$(1 - \delta_{K}) \|X\|_{2} \le \|AX\|_{2} \le (1 + \delta_{K}) \|X\|_{2}$$

holds for all X $\in \Sigma_k$

Compressed Sensing Basics (5/6)

$Y = A X = A_T X_T$

(T is the support set of X, $|T| \le k$)

- For stable solution:
 - A must satisfy RIP of order K
- For unique k-sparse solution:
 - A must satisfy RIP of order 2K
 - ▶ RIP of order $2K \equiv NSP$ of order 2K
- For stable solution via L-1 minimization:
 - A must satisfy RIP of order 3K

Compressed Sensing Basics (6/6)

 $Y = A X = A_T X_T$ (T is the support set of X, $|T| \le k$)

- For stable, unique k-sparse solution:
 - A must satisfy RIP of order 2K
- Do random matrices satisfy RIP?
 - Theorem:

Let φ be a n x N random matrix whose entries φ_{ij} are iid and drawn according to a Gaussian distribution with variance = 1/n.

If
$$n \ge C\delta^{(-2)}\left(klog\left(\frac{N}{k}\right) - log(\varepsilon)\right)$$
 for a constant $C > 0$. Then φ satisfies RIP of

order K and RIP constant $\delta_k \leq \delta$ with probability atleast 1- ϵ .

Coming back to original problem !

- Encoder φ : $\mathbf{y}_{nx1} = \varphi \mathbf{x}_{Nx1}$
- Decoder Δ : ??
- Reconstruction error :
 - For all $\mathbf{x} \in \mathbb{R}^{N}$, $\| \mathbf{x} \Delta(\varphi \mathbf{x}) \|_{2} \le C_{o} \sigma_{K}(\mathbf{x})$
 - C_o is a constant independent of k and N

Question: Can we construct such (φ, Δ) ?

YES! If φ satisfies RIP of order 3K and x is k-sparse.

What can we say about reconstruction error if x is not sparse?

Main Result

- Encoder :
 - $y_{nx1} = \varphi x_{Nx1}$
 - φ is an n x N Gaussian random matrix
 - □ Variance of $\varphi_{ij} = 1/n$
 - \Box n \geq c_o k log(N/n)
- Decoder :
 - Δ = minimum squared residual decoder
- Reconstruction error :
 - There exists a high probability set Ω(φ) ⊂ Ω such that for all P(Ω(φ)) ≥ 1- ε such that for all ω ∈ Ω(φ), we have

$$\|x(\omega) - \Delta(\varphi x(\omega))\|_2 \le C\sigma_K(x(\omega))$$

where C is a constant independent of k and N.

We have instance optimality w.h.p.!

High Level Proof

Gaussian Random Matrices

D

 φ is an nxN Gaussian random matrix with variance = 1/n and n \ge c_ok log(N/k) ---- (1)

respect to x and constant C

Existence of good encoders w.h.p

For each $x \in \mathbb{R}^N$, there exists a high probability set $\Omega(x) \subset \Omega$ such that for all $\omega \in \Omega(x)$, we have

$$x - \Delta(\varphi(\omega)x) \big\|_2 \le C_o \sigma_K(x)_{l_2}$$

with $C_o = 1 + 2C/(1-\delta)$ and Δ as the proposed decoder

Proof: RIP and BDDness implies existence of encoders w.h.p

- (a) φ satisfies RIP of order 2K w.h.p.
- (b) For each x ∈ R^N, there exists a high probability set Ω(x)⊂Ω such that for all ω ∈ Ω(x), φ(ω) satisfies boundedness property^{**} with respect to x and constant C
- Pick any arbitrary $x \in \mathbb{R}^N$:
 - Let T be the index set of k largest coefficients of $x \Rightarrow ||x x_T||_2 = \sigma_K(x)_{l_2}$
 - Ω₀: such that for ω ∈ Ω₀, φ(ω) satisfies RIP or order 2k with constant δ
 P(Ω₀) ≥ 1- ε
 - $\Omega_1(x-x_T)$: such that for $\omega \in \Omega_1$, $\varphi(\omega)$ satisfies boundedness probability for $x-x_T$ with constant *C*.
 - ► $P(\Omega_1(x-x_T)) \ge 1-\epsilon$
 - ► Let $\Omega' = \Omega_0 \cap \Omega_1(x x_T)$, then $P(\Omega') \ge 1 2\epsilon$ (easy to show !)
 - Let φ be generated from Ω'
 - Encoder output $y = \varphi x$.
 - Decoder output $\mathbf{x}^* = \Delta(y) = \underset{z \in \mathbb{R}^N, \|z\|_0 = K}{\operatorname{arg min}} \|y \varphi z\|_2$
 - We work out the proof !

Proof: Existence of encoders w.h.p implies instance optimality w.h.p

For each $x \in \mathbb{R}^N$, there exists a high probability set $\Omega(x) \subset \Omega$ such that for all $\omega \in \Omega(x)$, we have

$$\left\|x - \Delta(\varphi(\omega)x)\right\|_{2} \leq C_{o}\sigma_{K}(x)_{l_{2}}$$

with $C_o = 1 + 2C/(1-\delta)$ and Δ as the proposed decoder

We work out the proof !

Summary

- Encoder :
 - $y_{nx1} = \varphi x_{Nx1}$
 - φ is an n x N Gaussian random matrix
 - □ Variance of $\varphi_{ij} = 1/n$
 - \Box n \geq c_o k log(N/n)
- Decoder :
 - Δ = minimum squared residual decoder
- Reconstruction error :
 - There exists a high probability set Ω(φ) ⊂ Ω such that for all P(Ω(φ)) ≥ 1- ε such that for all ω ∈ Ω(φ), we have

$$\|x(\omega) - \Delta(\varphi x(\omega))\|_2 \le C\sigma_K(x(\omega))$$

where C is a constant independent of k and N.

We have instance optimality w.h.p.!

BACKUP

Þ

Proposed decoder $\Delta(y)$ for $y = \varphi x$

- Decoder depends on φ .
- Decoder output is k-sparse.
- Decoder output minimizes the squared residual i.e.

$$\Delta(y) = \underset{z \in \mathbb{R}^{N}, \|z\|_{0} = K}{\arg \min} \|y - \varphi z\|_{2}$$

PROOF CONTINUED...

Consider, $||x - x^*||_2 \le ||x - x_T||_2 + ||x_T - x^*||_2$ $= \sigma_k(x)_{l_2} + ||x_T - x^*||_2$ ----(i) Consider second term, $||x_{\tau} - x^*||_2 \le (1 - \delta)^{-1} ||\varphi(x_{\tau} - x^*)||_2$ $\leq (1-\delta)^{-1}(\|\varphi(x-x_{\tau})\|_{2} + \|\varphi(x-x^{*})\|_{2})$ $=(1-\delta)^{-1}(||v-\varphi x_T)||_2 + ||v-\varphi x^*||_2)$ $\leq (1-\delta)^{-1}(\|y-\varphi x_{T}\|)\|_{2} + \|y-\varphi x_{T}\|_{2})$ $\leq 2(1-\delta)^{-1} \|\varphi(x-x_T)\|_2$ $\leq 2C(1-\delta)^{-1}||(x-x_T)||_2 = 2C(1-\delta)^{-1}\sigma_k(x)_{l_2}$ ----(ii) From (i) and (ii),

 $||x - x^*||_2 \le \left(1 + \frac{2C}{1 - \delta}\right) \sigma_k(x)_{l_2}$