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Approximate representation of signals 
 

 Why approximate signals? 

 
 Aggressive signal acquisition  

 

 Acquired signal exists in very high dimensional space (RN) 
 High memory required for storage 

 High computational costs in signal processing    

 

 Solution: 
 Represent acquired signal in a lower dimensional space (RM) without losing 

much information about the signal. 

 Need (φ, ∆)    
   φ : X  Xcoded                   (encoder) 

   

   ∆: Xcoded  Xreconstructed      (decoder) 

 

   Approximation/reconstruction error   =  X – Xreconstructed  =  X – ∆(φX) 



Approximate representation of signals 

 Goal:  

 For given signal class U ⊂ RN , design (φ,∆) such that: 

 

 Encoder φ and decoder ∆ should be easy to implement 

 Linear encoders (φ is an m x N matrix)   

 Decoders (iterative/recursive, linear filters, greedy algorithms) 

 

 Encoder φ should be non adaptive with respect to input signal. 

 

 Approximation/reconstruction error should be bounded 

 e =  x – xreconstructed 

 || e || < B  for  || . || of interest. 

 

 



Approximate representation of signals 

 

 How to analyze the performance of (φ,∆) ? 

 

 Instantaneous approximation error: 

 E(x, U) = || x - ∆ (φx) ||   for some || . || defined on RN 

 

 Average approximation error: 

 E(U) =  
 

 

 Support recovery error: 

 E(x,U) = abs( |supp(x) ∩ supp(∆(φx))|  - |supp(x)| ) 
 

 Best k-term approximation error: 

   
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Transform Coding 
 

 Encoder φ : 
 Project X onto basis F(i) to obtain Y  :  Y = F X 

 Retain top k coefficients of Y and corresponding index set T 

 Encoder output {YT, T} 
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 Project X onto basis F(i) to obtain Y  :  Y = F X 

 Retain top k coefficients of Y and corresponding index set T 

 Encoder output {YT, T} 

 

 Decoder ∆ : 
 Generate Y such that:  Yi = Yi for i ϵ T   and   Yi = 0 for i ϵ TC   
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Transform Coding 
 

 Encoder φ : 
 Project X onto basis F(i) to obtain Y  :  Y = F X 

 Retain top k coefficients of Y and corresponding index set T 

 Encoder output {YT, T} 

 

 Decoder ∆ : 
 Generate Y such that:  Yi = Yi for i ϵ T   and   Yi = 0 for i ϵ TC   

 Xreconstructed = F-1Y 

 

 Approximation error : 
 || X – Xreconstructed || 2  =  ||Y – Y||2  =  || YT

C
 ||2  =  σk(Y)  

 

 Main idea: 
 Change of basis such that signal energy is concentrated in a few 

coefficients in new basis. 



Transform Coding 
 

 Inefficiencies in transform coding 

 
 Encoding process is adaptive  

 It is not known beforehand which coefficients to retain. 

 Top k index set T varies with input signal X  

 

 High computational costs during encoding 
 Computations in encoder scale with input signal dimension N 

 Top k index set T varies with input signal X  

 

 

 

 

 

   
 



Transform Coding 
 

 Inefficiencies in transform coding 

 
 Encoding process is adaptive  

 It is not known beforehand which coefficients to retain. 

 Top k index set T varies with input signal X  

 

 High computational costs during encoding 
 Computations in encoder scale with input signal dimension N 

 Top k index set T varies with input signal X  

 

 

Question:   

 Since we retain only a few coefficients, is it possible  to actually 
compute only a few linear non adaptive measurements and 
still retain necessary information about X?   

 



Non adaptive linear encoders 
 Encoder φ : 

 Project X onto n (<< N) random basis F(i) to obtain Y 

 

 

 

 

 

 

 

 

 Encoder output y = φx 

 Matrix φ is fixed (non adaptive)  

 

 Decoder ∆ : 

 ??  

 

 Reconstruction error : 

 || x – xreconstructed || 2  =  ||x – ∆(φx)||2 

 Does there exists a decoder such that reconstruction error is as good as transform coding ? 

 How small can n be ?  
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Non adaptive linear encoders 

 Encoder φ : 

 Encoder output :  ynx1  =  φ xNx1 

 φ is a n x N matrix  (n << N) 

 

 Decoder ∆ : 

 ??   (practically feasible) 

 

 Reconstruction error :  (As good as transform coding !) 
 For all x ϵ RN,  

 

 

 Co is a constant independent of k and N 

 Want instance optimality of (φ, ∆) 
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Non adaptive linear encoders 
 

 Problem Statement 

 
 Encoder φ :   ynx1  =  φ xNx1 

 Decoder ∆ :  ??  

 Reconstruction error :  
 For all x ϵ RN,  

 Co is a constant independent of k and N 

 

 

 Question:  Can we construct such (φ,∆) ? 
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Non adaptive linear encoders 
 

 Problem Statement 

 
 Encoder φ :   ynx1  =  φ xNx1 

 Decoder ∆ :  ??  

 Reconstruction error :  
 For all x ϵ RN,  

 Co is a constant independent of k and N 

 

 

 Question:  Can we construct such (φ,∆) ? 

 

 Compressed Sensing says YES !   
 Instance optimal (φ,∆) exist for k-sparse signals. 

 If φ is chosen properly, perfect recovery of x can be guaranteed using 
feasible decoding schemes.   
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Compressed Sensing Basics (1/6) 

 Major work done by:  

 Candes, Romberg, Tao 

 Donoho 

 Baranuik, Rauhut and many more. 

 

 Problem Statement : 

 Given Y, reconstruct X 

 Simple measurement model:  

    

   Y = AX 
 

Ynx1   - measurement vector 

A nxN  - fat matrix (n << N)   

X Nx1  - sparse vector with k non zero entries 

   



Compressed Sensing Basics (2/6) 

 Measurement model: 
 

            Ynx1 = AnxN XNx1             [ n << N, ||X||0 = k ] 

 

 AnxN has non trivial null space N(A) 

 Same Y can be caused due to infinitely many X 

 Which X to pick ?  

 

 Claim:  

 For unique k-sparse solution, N(A) should not contain any 2k or 
less sparse non zero vector  

    

  N(A) ∩ ∑2k = {0}             Null Space Property of order 2k 

 

 Construction of matrix A which satisfies NSP of order 2k is difficult. 



Compressed Sensing Basics (3/6) 

 Measurement model:  Ynx1 = AnxN XNx1            

 

 n << N  and  ||X||0 = k  

 Let T ⊂ {1,2….N}  is the support set of X,  | T | ≤ k  

 Compact measurement model: 

 

     Y = ATXT 

 

 For unique solution, all k columns of sub matrix AT must be 

linearly independent for all possible index sets T. 

 

 For stable solution, Gram(AT) must be well conditioned. (Why ?) 

 

 

 



Compressed Sensing Basics (4/6) 

 Y =  A X  =  AT XT     (T is the support set of X,  | T | ≤ k)  
 

 For stable solution:  

 (AT )tAT must be well conditioned for all index sets T. 

 A must satisfy RIP of order K 

 

 

 Restricted Isometry Property (RIP) 

 

 Matrix A satisfies RIP of order K if there is a δk in (0,1) such that  

 

 

    holds for all X ϵ ∑k 
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Compressed Sensing Basics (5/6) 

       Y =  A X  =  AT XT      
      (T is the support set of X,  | T | ≤ k)  

 

 For stable solution:  

 A must satisfy RIP of order K 

 

 For unique k-sparse solution:  

 A must satisfy RIP of order 2K 

 RIP of order 2K  ≡ NSP of order 2K 

 

 For stable solution via L-1 minimization:  

 A must satisfy RIP of order 3K 

 

 



Compressed Sensing Basics (6/6) 

       Y =  A X  =  AT XT      
          (T is the support set of X,  | T | ≤ k)  

 

 For stable, unique k-sparse solution:  
 A must satisfy RIP of order 2K 

 

 

 Do random matrices satisfy RIP?  

 
 Theorem: 

 Let φ be a n x N random matrix whose entries φij are iid and drawn according to 

 a Gaussian distribution with variance = 1/n.  

      

 If                                                  for a constant C > 0. Then φ satisfies RIP of  

 

 order K and RIP constant δk ≤ δ with probability atleast 1-ϵ.  
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Non adaptive linear encoders 

 

 Coming back to original problem ! 

 
 Encoder φ :   ynx1  =  φ xNx1 

 Decoder ∆ :  ??  

 Reconstruction error :  

 For all x ϵ RN,  

 Co is a constant independent of k and N 

 

 Question:  Can we construct such (φ,∆) ? 

 

 YES !  If φ satisfies RIP of order 3K and x is k-sparse.    

 

 What can we say about  reconstruction error if x is not sparse?      
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Main Result 
 

 Encoder :    
 ynx1  =  φ xNx1 

 φ is an n x N Gaussian random matrix 
 Variance of φij  = 1/n  

 n  ≥  co k log(N/n) 

 

 Decoder :    
 ∆  = minimum squared residual decoder 

  

 Reconstruction error : 
 There exists a high probability set Ω(φ) ⊂ Ω such that for all  

 P(Ω(φ)) ≥ 1- ϵ  such that for all ω ϵ Ω(φ), we have  

 

 

 

 where C is a constant independent of k and N. 

 We have instance optimality w.h.p.! 
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High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   
  Gaussian Random 

Matrices 



High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   

 
(a) φ satisfies RIP of order 2K w.h.p. 

 
(b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such 

that for all ω ϵ Ω(x) , φ(ω) satisfies boundedness property** with 

respect to x and constant C 
 

  

RIP and 

Boundedness property 

Gaussian Random 

Matrices 



High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   

 
(a) φ satisfies RIP of order 2K w.h.p. 

 
(b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such 

that for all ω ϵ Ω(x) , φ(ω) satisfies boundedness property** with 

respect to x and constant C 
 

  

 
For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for  

all ω ϵ Ω(x), we have 

 

 

with Co = 1 + 2C/(1-δ) and ∆ as the proposed decoder  
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For every random matrix φ satisfying (1), there exists a high 

probability set Ω(φ) ⊂ Ω such that for all ω ϵ Ω(φ), we have: 

 

  

 

          for some constant Co is a constant independent of k and N. 
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Proof: RIP and BDDness implies existence of encoders w.h.p 

 

 

 Pick any arbitrary x ϵ RN : 

 Let T be the index set of k largest coefficients of x  => 

  

 Ω0 : such that for ω ϵ Ω0,  φ(ω) satisfies RIP or order 2k with constant δ 

 P(Ω0) ≥ 1- ϵ 

 

 Ω1(x-xT): such that for ω ϵ Ω1,  φ(ω) satisfies boundedness probability for x-xT 

with constant C. 

 P(Ω1(x-xT)) ≥ 1- ϵ 

 

 Let Ω’ = Ω0 ∩ Ω1(x-xT), then P(Ω’) ≥ 1-2ϵ   (easy to show !) 

 

  Let φ be generated from Ω’ 

 Encoder output y = φ x.  

 Decoder output  x* =  

 

 We work out the proof ! 

 

 (a) φ satisfies RIP of order 2K w.h.p. 

 

 (b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for all ω ϵ Ω(x) , φ(ω) 
satisfies boundedness property** with respect to x and constant C 
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Proof: Existence of encoders w.h.p implies 

instance optimality w.h.p 

 

 

 

 

 

 We work out the proof ! 

 

For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for  

all ω ϵ Ω(x), we have 

 

 

with Co = 1 + 2C/(1-δ) and ∆ as the proposed decoder  
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Summary 
 

 Encoder :    
 ynx1  =  φ xNx1 

 φ is an n x N Gaussian random matrix 
 Variance of φij  = 1/n  

 n  ≥  co k log(N/n) 

 

 Decoder :    
 ∆  = minimum squared residual decoder 

  

 Reconstruction error : 
 There exists a high probability set Ω(φ) ⊂ Ω such that for all  

 P(Ω(φ)) ≥ 1- ϵ  such that for all ω ϵ Ω(φ), we have  

 

 

 

 where C is a constant independent of k and N. 

 We have instance optimality w.h.p.! 

 
2

( ) ( ( )) (  )Kx C xx    



 BACKUP 






