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Approximate representation of signals 
 

 Why approximate signals? 

 
 Aggressive signal acquisition  

 

 Acquired signal exists in very high dimensional space (RN) 
 High memory required for storage 

 High computational costs in signal processing    

 

 Solution: 
 Represent acquired signal in a lower dimensional space (RM) without losing 

much information about the signal. 

 Need (φ, ∆)    
   φ : X  Xcoded                   (encoder) 

   

   ∆: Xcoded  Xreconstructed      (decoder) 

 

   Approximation/reconstruction error   =  X – Xreconstructed  =  X – ∆(φX) 



Approximate representation of signals 

 Goal:  

 For given signal class U ⊂ RN , design (φ,∆) such that: 

 

 Encoder φ and decoder ∆ should be easy to implement 

 Linear encoders (φ is an m x N matrix)   

 Decoders (iterative/recursive, linear filters, greedy algorithms) 

 

 Encoder φ should be non adaptive with respect to input signal. 

 

 Approximation/reconstruction error should be bounded 

 e =  x – xreconstructed 

 || e || < B  for  || . || of interest. 

 

 



Approximate representation of signals 

 

 How to analyze the performance of (φ,∆) ? 

 

 Instantaneous approximation error: 

 E(x, U) = || x - ∆ (φx) ||   for some || . || defined on RN 

 

 Average approximation error: 

 E(U) =  
 

 

 Support recovery error: 

 E(x,U) = abs( |supp(x) ∩ supp(∆(φx))|  - |supp(x)| ) 
 

 Best k-term approximation error: 
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Transform Coding 
 

 Encoder φ : 
 Project X onto basis F(i) to obtain Y  :  Y = F X 

 Retain top k coefficients of Y and corresponding index set T 

 Encoder output {YT, T} 

 

 

 

 

 

 

 

 

  

 

 

  



Transform Coding 
 

 Encoder φ : 
 Project X onto basis F(i) to obtain Y  :  Y = F X 

 Retain top k coefficients of Y and corresponding index set T 

 Encoder output {YT, T} 

 

 Decoder ∆ : 
 Generate Y such that:  Yi = Yi for i ϵ T   and   Yi = 0 for i ϵ TC   

 Xreconstructed = F-1Y 

 

 

 

 

 

  

 

 

 



Transform Coding 
 

 Encoder φ : 
 Project X onto basis F(i) to obtain Y  :  Y = F X 

 Retain top k coefficients of Y and corresponding index set T 

 Encoder output {YT, T} 

 

 Decoder ∆ : 
 Generate Y such that:  Yi = Yi for i ϵ T   and   Yi = 0 for i ϵ TC   

 Xreconstructed = F-1Y 

 

 Approximation error : 
 || X – Xreconstructed || 2  =  ||Y – Y||2  =  || YT

C
 ||2  =  σk(Y)  

 

 Main idea: 
 Change of basis such that signal energy is concentrated in a few 

coefficients in new basis. 



Transform Coding 
 

 Inefficiencies in transform coding 

 
 Encoding process is adaptive  

 It is not known beforehand which coefficients to retain. 

 Top k index set T varies with input signal X  

 

 High computational costs during encoding 
 Computations in encoder scale with input signal dimension N 

 Top k index set T varies with input signal X  

 

 

 

 

 

   
 



Transform Coding 
 

 Inefficiencies in transform coding 

 
 Encoding process is adaptive  

 It is not known beforehand which coefficients to retain. 

 Top k index set T varies with input signal X  

 

 High computational costs during encoding 
 Computations in encoder scale with input signal dimension N 

 Top k index set T varies with input signal X  

 

 

Question:   

 Since we retain only a few coefficients, is it possible  to actually 
compute only a few linear non adaptive measurements and 
still retain necessary information about X?   

 



Non adaptive linear encoders 
 Encoder φ : 

 Project X onto n (<< N) random basis F(i) to obtain Y 

 

 

 

 

 

 

 

 

 Encoder output y = φx 

 Matrix φ is fixed (non adaptive)  

 

 Decoder ∆ : 

 ??  

 

 Reconstruction error : 

 || x – xreconstructed || 2  =  ||x – ∆(φx)||2 

 Does there exists a decoder such that reconstruction error is as good as transform coding ? 

 How small can n be ?  
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Non adaptive linear encoders 

 Encoder φ : 

 Encoder output :  ynx1  =  φ xNx1 

 φ is a n x N matrix  (n << N) 

 

 Decoder ∆ : 

 ??   (practically feasible) 

 

 Reconstruction error :  (As good as transform coding !) 
 For all x ϵ RN,  

 

 

 Co is a constant independent of k and N 

 Want instance optimality of (φ, ∆) 
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Non adaptive linear encoders 
 

 Problem Statement 

 
 Encoder φ :   ynx1  =  φ xNx1 

 Decoder ∆ :  ??  

 Reconstruction error :  
 For all x ϵ RN,  

 Co is a constant independent of k and N 

 

 

 Question:  Can we construct such (φ,∆) ? 
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Non adaptive linear encoders 
 

 Problem Statement 

 
 Encoder φ :   ynx1  =  φ xNx1 

 Decoder ∆ :  ??  

 Reconstruction error :  
 For all x ϵ RN,  

 Co is a constant independent of k and N 

 

 

 Question:  Can we construct such (φ,∆) ? 

 

 Compressed Sensing says YES !   
 Instance optimal (φ,∆) exist for k-sparse signals. 

 If φ is chosen properly, perfect recovery of x can be guaranteed using 
feasible decoding schemes.   
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Compressed Sensing Basics (1/6) 

 Major work done by:  

 Candes, Romberg, Tao 

 Donoho 

 Baranuik, Rauhut and many more. 

 

 Problem Statement : 

 Given Y, reconstruct X 

 Simple measurement model:  

    

   Y = AX 
 

Ynx1   - measurement vector 

A nxN  - fat matrix (n << N)   

X Nx1  - sparse vector with k non zero entries 

   



Compressed Sensing Basics (2/6) 

 Measurement model: 
 

            Ynx1 = AnxN XNx1             [ n << N, ||X||0 = k ] 

 

 AnxN has non trivial null space N(A) 

 Same Y can be caused due to infinitely many X 

 Which X to pick ?  

 

 Claim:  

 For unique k-sparse solution, N(A) should not contain any 2k or 
less sparse non zero vector  

    

  N(A) ∩ ∑2k = {0}             Null Space Property of order 2k 

 

 Construction of matrix A which satisfies NSP of order 2k is difficult. 



Compressed Sensing Basics (3/6) 

 Measurement model:  Ynx1 = AnxN XNx1            

 

 n << N  and  ||X||0 = k  

 Let T ⊂ {1,2….N}  is the support set of X,  | T | ≤ k  

 Compact measurement model: 

 

     Y = ATXT 

 

 For unique solution, all k columns of sub matrix AT must be 

linearly independent for all possible index sets T. 

 

 For stable solution, Gram(AT) must be well conditioned. (Why ?) 

 

 

 



Compressed Sensing Basics (4/6) 

 Y =  A X  =  AT XT     (T is the support set of X,  | T | ≤ k)  
 

 For stable solution:  

 (AT )tAT must be well conditioned for all index sets T. 

 A must satisfy RIP of order K 

 

 

 Restricted Isometry Property (RIP) 

 

 Matrix A satisfies RIP of order K if there is a δk in (0,1) such that  

 

 

    holds for all X ϵ ∑k 

   
2 2 2

1 1  K KX AX X    



Compressed Sensing Basics (5/6) 

       Y =  A X  =  AT XT      
      (T is the support set of X,  | T | ≤ k)  

 

 For stable solution:  

 A must satisfy RIP of order K 

 

 For unique k-sparse solution:  

 A must satisfy RIP of order 2K 

 RIP of order 2K  ≡ NSP of order 2K 

 

 For stable solution via L-1 minimization:  

 A must satisfy RIP of order 3K 

 

 



Compressed Sensing Basics (6/6) 

       Y =  A X  =  AT XT      
          (T is the support set of X,  | T | ≤ k)  

 

 For stable, unique k-sparse solution:  
 A must satisfy RIP of order 2K 

 

 

 Do random matrices satisfy RIP?  

 
 Theorem: 

 Let φ be a n x N random matrix whose entries φij are iid and drawn according to 

 a Gaussian distribution with variance = 1/n.  

      

 If                                                  for a constant C > 0. Then φ satisfies RIP of  

 

 order K and RIP constant δk ≤ δ with probability atleast 1-ϵ.  
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Non adaptive linear encoders 

 

 Coming back to original problem ! 

 
 Encoder φ :   ynx1  =  φ xNx1 

 Decoder ∆ :  ??  

 Reconstruction error :  

 For all x ϵ RN,  

 Co is a constant independent of k and N 

 

 Question:  Can we construct such (φ,∆) ? 

 

 YES !  If φ satisfies RIP of order 3K and x is k-sparse.    

 

 What can we say about  reconstruction error if x is not sparse?      
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Main Result 
 

 Encoder :    
 ynx1  =  φ xNx1 

 φ is an n x N Gaussian random matrix 
 Variance of φij  = 1/n  

 n  ≥  co k log(N/n) 

 

 Decoder :    
 ∆  = minimum squared residual decoder 

  

 Reconstruction error : 
 There exists a high probability set Ω(φ) ⊂ Ω such that for all  

 P(Ω(φ)) ≥ 1- ϵ  such that for all ω ϵ Ω(φ), we have  

 

 

 

 where C is a constant independent of k and N. 

 We have instance optimality w.h.p.! 
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High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   
  Gaussian Random 

Matrices 



High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   

 
(a) φ satisfies RIP of order 2K w.h.p. 

 
(b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such 

that for all ω ϵ Ω(x) , φ(ω) satisfies boundedness property** with 

respect to x and constant C 
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High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   

 
(a) φ satisfies RIP of order 2K w.h.p. 

 
(b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such 

that for all ω ϵ Ω(x) , φ(ω) satisfies boundedness property** with 

respect to x and constant C 
 

  

 
For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for  

all ω ϵ Ω(x), we have 

 

 

with Co = 1 + 2C/(1-δ) and ∆ as the proposed decoder  
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High Level Proof 

φ is an nxN Gaussian random matrix with variance = 1/n and n ≥ cok log(N/k)  ---- (1)   

 
(a) φ satisfies RIP of order 2K w.h.p. 

 
(b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such 

that for all ω ϵ Ω(x) , φ(ω) satisfies boundedness property** with 

respect to x and constant C 
 

  

 
For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for  

all ω ϵ Ω(x), we have 

 

 

with Co = 1 + 2C/(1-δ) and ∆ as the proposed decoder  
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For every random matrix φ satisfying (1), there exists a high 

probability set Ω(φ) ⊂ Ω such that for all ω ϵ Ω(φ), we have: 

 

  

 

          for some constant Co is a constant independent of k and N. 
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Proof: RIP and BDDness implies existence of encoders w.h.p 

 

 

 Pick any arbitrary x ϵ RN : 

 Let T be the index set of k largest coefficients of x  => 

  

 Ω0 : such that for ω ϵ Ω0,  φ(ω) satisfies RIP or order 2k with constant δ 

 P(Ω0) ≥ 1- ϵ 

 

 Ω1(x-xT): such that for ω ϵ Ω1,  φ(ω) satisfies boundedness probability for x-xT 

with constant C. 

 P(Ω1(x-xT)) ≥ 1- ϵ 

 

 Let Ω’ = Ω0 ∩ Ω1(x-xT), then P(Ω’) ≥ 1-2ϵ   (easy to show !) 

 

  Let φ be generated from Ω’ 

 Encoder output y = φ x.  

 Decoder output  x* =  

 

 We work out the proof ! 

 

 (a) φ satisfies RIP of order 2K w.h.p. 

 

 (b) For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for all ω ϵ Ω(x) , φ(ω) 
satisfies boundedness property** with respect to x and constant C 
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Proof: Existence of encoders w.h.p implies 

instance optimality w.h.p 

 

 

 

 

 

 We work out the proof ! 

 

For each x ϵ RN, there exists a high probability set Ω(x)⊂Ω such that for  

all ω ϵ Ω(x), we have 

 

 

with Co = 1 + 2C/(1-δ) and ∆ as the proposed decoder  
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Summary 
 

 Encoder :    
 ynx1  =  φ xNx1 

 φ is an n x N Gaussian random matrix 
 Variance of φij  = 1/n  

 n  ≥  co k log(N/n) 

 

 Decoder :    
 ∆  = minimum squared residual decoder 

  

 Reconstruction error : 
 There exists a high probability set Ω(φ) ⊂ Ω such that for all  

 P(Ω(φ)) ≥ 1- ϵ  such that for all ω ϵ Ω(φ), we have  

 

 

 

 where C is a constant independent of k and N. 

 We have instance optimality w.h.p.! 
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