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“Big-p” Data: large number of variables “p”

• Across modern applications {images, signals, networks} 
      many^many variables

fMRI images gene expression  
profiles social networks

variables: image voxels variables: genes variables: users
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“Big-p” Data

• A critical question given a large number of variables of interest:

‣ What are the connections/dependencies among the variables?

• Consider a visual representation of this problem: where the variables are 
represented as nodes of a graph, and edge weights represent dependencies

• Estimating the dependencies among the variables  
is then equivalent to estimating such a weighted graph
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Graph Structure

• What dependencies between variables could we be interested in?

• Conditional (In)dependence: Given all other genes, are Gene X and Gene Y 
(in)dependent?

• X = “shoe-size” and Y = “gray-hair” are “marginally” dependent (think of 
small children with small shoe-sizes and no gray-hair)

• But “shoe size” and “gray hair” are common-sensically not directly 
associated

• Given Z = “age”, the dependence vanishes away: they are conditionally 
independent
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Conditional Independence Graph Structure

• Lack of an edge:  lack of “direct dependence” 


• no-edge(x,y)      :  x and y are independent given rest of 
nodes


X1

X3

X2
X5

X4

Edges indicate Markov independence  
conditions

X3 ? X4 | {X1, X2, X5}
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Graphical Model Structure

 Given some graph G representing the conditional independence 
 edge structure among the vector of random variables X 

 What is the set of distributions over X that respects this  
 conditional independence structure (in other words, that satisfies 
 all these conditional independences among the variables)  

 This set of distributions is called the graphical model  
 represented by G
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Graphical Model Structure

 The graphical model represented by G is a family of distributions that 
respects the conditional independence structure specified by G


 Do these distributions have any particular algebraic form? 

 Hammersley Clifford: they take the form of a product of local factors,  
each of which depend only on a clique (fully connected subgraph)


A

B

C

X1
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X2
X5

X4

Edges indicate Markov independence  
conditions

X3 ? X4 | {X1, X2, X5}

p(X) =
1
Z

�A(XA)�B(XB)�C(XC)



Graphical Model Structure

• The conditional independence graph structure, underlying a 
graphical model, is an object of interest in varied applications


• network analysis, medical diagnosis, gene expression analyses, 
natural language processing, ....

US Senate 109th 
Congress

Banerjee et al, 2008

MODEL SELECTION THROUGH SPARSE MAXIMUM LIKELIHOOD ESTIMATION

7.1 Rosetta Inpharmatics Compendium

We applied our algorithms to the Rosetta Inpharmatics Compendium of gene expression profiles

described by Hughes et al. (2000). The 300 experiment compendium contains n = 253 samples

with p= 6136 variables. With a view towards obtaining a very sparse graph, we replaced !/2p2 in
(3) by !, and set != 0.05. The resulting penalty parameter is "= 0.0313.

This is a large penalty for this data set, and by applying Theorem 4 we find that all but 270 of

the variables are estimated to be independent from all the rest, clearly a very conservative estimate.

Figure 13 displays the resulting graph.

Figure 13: Application to Hughes compendium. The above graph results from solving (1) for this

data set with a penalty parameter of "= 0.0313.

Figure 14 focuses on a region of Figure 13, a cluster of genes that is unconnected to the remain-

ing genes in this estimate. According to Gene Ontology (see Ashburner et al., 2000), these genes

are associated with iron homeostasis. The probability that a gene has been false included in this

cluster is at most 0.05.

As a second example, in Figure 15, we show a subgraph of genes associated with cellular mem-

brane fusion. All three graphs were rendered using Cytoscape.
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Graphical Model Structure Selection

Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

θstxsxt

}

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . , Xp), identify the underlying
graph structure

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 7 / 36

Given: n samples of X = (X1, . . . , Xp) with distribution p(X; ✓

⇤
;G), where

p(X; ✓

⇤
) = exp

8
<

:
X

(s,t)2E(G)

✓st�st(xs, xt)�A(✓

⇤
)

9
=

;

Problem: Estimate graph G given just the n samples.
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drawn from some unknown graphical model distribution P(X; G) 

for some unknown graph G, recover the graph G. 



Graphical Model Structure Selection

Given: n samples of X = (X1, . . . , Xp) with distribution p(X; ✓

⇤
;G), where

p(X; ✓

⇤
) = exp

8
<

:
X

(s,t)2E(G)

✓st�st(xs, xt)�A(✓

⇤
)

9
=

;

Problem: Estimate graph G given just the n samples.

drawn from some unknown graphical model distribution P(X; G) 

for some unknown graph G, recover the graph G. 

• It is common to further assume a parametric model form for P(X; G)


• Ising Models, Multinomial (Discrete) Models,  
Gaussian Graphical Models, …



Examples: Parametric Graphical Models

p(X; �, G) =
1

Z(�)
exp

� ⇤

(s,t)�E(G)

�st ⇥st(Xs, Xt)
⇥

�st(xs, xt) : arbitrary potential functions

Ising xs xt

Potts I(xs = xt)
Indicator I(xs, xt = j, k)



Parametric Graphical Model Selection

Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions
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}
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Graphical Model Selection: Classical Approaches

• Score Based Approaches: search over space of graphs, with a score for any 
graph (based on learning the parametric graphical model given the graph)

• Constraint-based Approaches: estimate individual edges by hypothesis tests 
for conditional independences

• Caveats:

‣ difficult to provide guarantees for estimators

‣ estimation problems they solve are NP-Hard



Graphical Model Selection

• Modern Approach: statistical estimation of the parametric graphical model 
subject to constraints on the underlying graph (e.g. edge bounds, degree 
bounds, etc.)


• Caveats: such statistical estimation is not always computationally 
tractable; statistical guarantees plausible, but require advanced arguments



Graph-structure constrained MLE

• Statistical Estimation typically intractable because of 


‣ Graph Constraints: typically non-convex


‣ Likelihood function: typically NP-Hard to compute

neg. log-likelihoodgraph 
constraints

⌅� ⇥ arg min
�:⇥�⇥0�k

�
� 1

n

n⇤

i=1

log p(x(i); �)

⇥

✓ : ✓ 2 ⇥



Outline: Graphical Model Selection 

• Ising Models


• In brief: Gaussian Graphical Models, Multinomial Discrete Graphical Models


• In brief: a new class of parametric graphical models — exponential family 
graphical models



Ising Model Selection

Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

θstxsxt

}

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . , Xp), identify the underlying
graph structure
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Ising Model Selection

Given: n samples of X = (X1, . . . , Xp) with distribution p(X; ✓

⇤
;G), where

p(X; ✓

⇤
) = exp

8
<

:
X

(s,t)2E(G)

✓st�st(xs, xt)�A(✓

⇤
)

9
=

;

Problem: Estimate graph G given just the n samples.

p(X; ✓⇤) = exp

8
<

:
X

(s,t)2E(G)

✓⇤stXsXt �A(✓⇤)

9
=

;

Applications: statistical physics, computer vision,  
social network analysis 

US Senate 109th 
Congress

Banerjee et al, 2008



Ising Model Selection

• Just computing the likelihood of a known Ising model is NP Hard (since the 
normalization constant requires summing over exponentially many 
configurations)

Z(✓) =

X

x2{�1,1}p

exp

 
X

st

✓

st

x

s

x

t

!



Ising Model Selection

• Just computing the likelihood of a known Ising model is NP Hard (since the 
normalization constant requires summing over exponentially many 
configurations)

• Estimating the unknown Ising model parameters as well as graph structure 
might seem to be NP Hard as well
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Ising Model Selection

• Just computing the likelihood of a known Ising model is NP Hard (since the 
normalization constant requires summing over exponentially many 
configurations)

• Estimating the unknown Ising model parameters as well as graph structure 
might seem to be NP Hard as well

• On the other hand, it is tractable to estimate the node-wise conditional 
distributions, of one variable conditioned on the rest of the variables

Z(✓) =

X

x2{�1,1}p

exp

 
X

st

✓

st

x

s

x

t

!



Neighborhood Estimation in Ising Models

p(Xr|XV \r; �, G) =
exp(

�
t�N(r) 2 �rtXrXt)

exp(
�

t�N(r) 2 �rtXrXt) + 1

For Ising models, node conditional  
distribution is just a logistic regression model:
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• So instead of estimating graph structure constrained global Ising model, we 
could estimate structure constrained local node-conditional distributions —
logistic regression models 

• But would node-conditional distributions uniquely specify a consistent joint, 
or even be consistent with any joint at all?
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Conditional and Joint Distributions

• Would node-conditional distributions uniquely specify a consistent joint, or 
even be consistent with any joint at all?

• In general: no!

• But for the Ising model and node-wise logistic regression models: yes!

• Theorem (Besag 1974, R., Wainwright, Lafferty 2010): An Ising model uniquely 
specifies and is uniquely specified by a set of node-wise logistic 
regression models.



Neighborhood Estimation in Ising Models

• Global graph constraint of sparse, bounded degree graphs is equivalent to 
local constraint of bounded node-degrees (number of neighbors)


• Estimate node neighborhoods via constrained logistic regression models, and 
stich node-neighborhoods together to form global graph

p(Xr|XV \r; �, G) =
exp(

�
t�N(r) 2 �rtXrXt)

exp(
�

t�N(r) 2 �rtXrXt) + 1

For Ising models, node conditional  
distribution is just a logistic regression model:



Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s)
for all s ∈ V .

Method: Given n i.i.d. samples {X(1), . . . , X(n)}, perform logistic regression of

each node Xs on X\s := {Xs, t ̸= s} to estimate neighborhood structure bN(s).

1 For each node s ∈ V , perform ℓ1 regularized logistic regression of Xs on the
remaining variables X\s:

bθ[s] := arg min
θ∈Rp−1

(
1
n

nX

i=1

f(θ; X(i)
\s )

| {z }
+ ρn ∥θ∥1|{z}

)

logistic likelihood regularization

2 Estimate the local neighborhood bN(s) as the support (non-negative entries) of

the regression vector bθ[s].

3 Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 21 / 36



Empirical behavior: Unrescaled plots

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Number of samples

P
ro

b
. 

s
u

c
c
e

s
s

Star graph; Linear fraction neighbors

 

 

p =  64

p = 100

p = 225

Plots of success probability versus raw sample size .
Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 22 / 36



Sufficient conditions for consistent model selection
graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)

θLR(n, p, d) :=
n

d3 log p
> θcrit

and regularization parameter ρn ≥ c1 τ
√

log p
n , then with probability greater

than 1 − 2 exp
(
− c2(τ − 2) log p

)
→ 1:

(a) Uniqueness: For each node s ∈ V , the ℓ1-regularized logistic convex
program has a unique solution. (Non-trivial since p ≫ n =⇒ not strictly convex).

(b) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.

(c) Correct inclusion: For θmin ≥ c3τ
√

dρn, the method selects the correct
signed neighborhood.

Consequence: For θmin = Ω(1/d), it suffices to have n = Ω(d3 log p).

(R., Wainwright,  
Lafferty, 2010)



Assumptions

Define Fisher information matrix of logistic regression:
Q∗ := Eθ∗

[
∇2f(θ∗;X)

]
.

A1. Dependency condition: Bounded eigenspectra:

Cmin ≤ λmin(Q∗
SS), and λmax(Q∗

SS) ≤ Cmax.

λmax(Eθ∗ [XXT ]) ≤ Dmax.

A2. Incoherence There exists an ν ∈ (0, 1] such that

|||Q∗
ScS(Q∗

SS)−1|||∞,∞ ≤ 1 − ν.

where |||A|||∞,∞ := maxi
∑

j |Aij |.

bounds on eigenvalues are fairly standard

incoherence condition:

! partly necessary (prevention of degenerate models)
! partly an artifact of ℓ1-regularization

incoherence condition is weaker than correlation decay

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 26 / 36
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Multinomial, Gaussian Graphical Models

• Ising models are a specific parametric graphical model family, suited to the 
case where the variables are binary.

• When variables are categorical, taking values in a finite set:


‣ Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)


‣ Applications: natural language processing, image analysis, bioinformatics



Multinomial, Gaussian Graphical Models

• Ising models are a specific parametric graphical model family, suited to the 
case where the variables are binary.


• When variables are thin-tailed continuous


‣ Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012) 


‣ Applications: widely used in bioinformatics e.g. genomic networks from 
micro-array data

MODEL SELECTION THROUGH SPARSE MAXIMUM LIKELIHOOD ESTIMATION

7.1 Rosetta Inpharmatics Compendium

We applied our algorithms to the Rosetta Inpharmatics Compendium of gene expression profiles

described by Hughes et al. (2000). The 300 experiment compendium contains n = 253 samples

with p= 6136 variables. With a view towards obtaining a very sparse graph, we replaced !/2p2 in
(3) by !, and set != 0.05. The resulting penalty parameter is "= 0.0313.

This is a large penalty for this data set, and by applying Theorem 4 we find that all but 270 of

the variables are estimated to be independent from all the rest, clearly a very conservative estimate.

Figure 13 displays the resulting graph.

Figure 13: Application to Hughes compendium. The above graph results from solving (1) for this

data set with a penalty parameter of "= 0.0313.

Figure 14 focuses on a region of Figure 13, a cluster of genes that is unconnected to the remain-

ing genes in this estimate. According to Gene Ontology (see Ashburner et al., 2000), these genes

are associated with iron homeostasis. The probability that a gene has been false included in this

cluster is at most 0.05.

As a second example, in Figure 15, we show a subgraph of genes associated with cellular mem-

brane fusion. All three graphs were rendered using Cytoscape.
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Multinomial, Gaussian Graphical Models

• Ising models are a specific parametric graphical model family, suited to the 
case where the variables are binary.


• When variables are categorical, taking values in a finite set:


‣ Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)


• When variables are thin-tailed continuous


‣ Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012) 


• Similar results as in the Ising model case: estimate constrained node-
conditional distributions, and combine to estimate overall graph
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Parametric Graphical Models

• Classical parametric graphical model families —Ising, Multinomial/discrete, 
Gaussian models

‣ suited for binary, categorical/discrete, and thin-tailed continuous data 
respectively 

• What if we have data that does not fall into these categories: skewed 
continuous, or count-valued for instance

‣ Are there more general parametric graphical model families?

‣ Exponential Family Graphical Models (Yang, R., Allen, Liu 2012, 2014)
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Recap: Classical Parametric Graphical Models

• Ising Models


‣ node-conditional distribution: Bernoulli 

• Multinomial/Discrete Graphical Models


‣ node-conditional distribution: Multinomial

• Gaussian Graphical model


‣ node-conditional distribution: univariate Gaussian

• Perhaps there’s a pattern here …



Background: Exponential Family Distributions
References

Review: Exponential Families

Most common univariate distributions: Gaussian, Exponential,
Bernoulli, Binomial, Poisson, Negative binomial, ...

A broad class of distributions sharing a certain form:
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Towards Exponential Family Graphical Models

• Suppose each node-conditional distribution is specified by some exponential 
family distribution:


• Key Question: Does there exist a consistent joint distribution, and if so, is it 
unique?

References

Mixed Exponential Family Markov Random Fields

The most general assumptions:
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Exponential Family Graphical Models

• Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are 
specified by exponential family distributions as in previous slide. Then there 
exists a unique joint distribution consistent with these node-conditional 
distributions, and moreover it takes the following form:
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Mixed Exponential Family Markov Random Fields

Theorem

Under the previous general conditions that (a) the conditional exponential family
distribution and (b) the joint is a graphical model with cliques of size at most k,
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Exponential Family Graphical Models

• Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are 
specified by exponential family distributions as in previous slide. Then there 
exists a unique joint distribution consistent with these node-conditional 
distributions, and moreover it takes the following form:


• The joint distribution moreover is a graphical model distribution with respect 
to a graph G specified by the local Markov independencies satisfied by the 
node-conditional distributions

References

Mixed Exponential Family Markov Random Fields
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Example: Poisson Graphical Models

• MicroRNA network learnt from  
The Cancer Genome Atlas (TCGA)  
Breast Cancer Level II Data

Case Study: Biological Results

SPGM miRNA Network:

An Important Special Case: Poisson Graphical Model

Joint Distribution:

P(X ) = exp

8

<

:

X

s

✓
s

X

s

+
X

(s,t)2E

✓
st

X

s

X

t

+
X

s

log(X
s

!)� A(✓)

9

=

;

.

Node-conditional Distributions:

P(X
s

|X
V \s) / exp

8

<

:

0

@✓
s

+
X

t2N(s)

✓
st

X

t

1

A

X

s

+ log(X
s

!)

9

=

;

,

Pairwise variant discussed as “Poisson auto-model” in (Besag, 74).



Example: Mixed Graphical Models

Poisson-Ising Models
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Manichean Graphical Models: Mixed MRFs with Two Data Types

Gaussian - Ising Graphical Models
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Example: Mixed Graphical Models
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Experiments: Cancer Genomic and Transcriptomic Data
Combine ‘Level III RNA-sequencing’ data and ‘Level II non-silent somatic mutation
and level III copy number variation data’ for 697 breast cancer patients.
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TPGM - Ising graphical model

(Yellow) Gene expression via RNA-sequencing, count-valued

(Blue) Genomic mutation, binary mutation status

Well known components: (DLK1, THSD4) - (TP53)
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Learning Exponential Family Graphical Models

• By construction, estimating exponential family graphical models is equivalent 
to estimate node-conditional univariate exponential family distributions

• Graph Structure Learning Procedure: 


‣ Estimate graph-structure constrained node-conditional distributions, and 
estimate node-neighborhoods


‣ Stitch node-neighborhoods together to form global graph estimate

• Similar statistical guarantees for graphical model structure recovery as in 
Ising, Gaussian graphical model case can be showed even under this general 
setting (Yang, R., Allen, Liu 2014)



Experiments: Poisson Graphical Models
Background General Family of Graphical Models Learning Graphical Models for GLM Graphical Models Experiments Conclusion

Experiments - Simulated Data

! Poisson Graphical Model: 4NN Grid structure
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: Graphical Models via Generalized Linear Models Joint With Eunho Yang, Genevera I. Allen, Zhandong Liu
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