Learning Graphical Model Structure

Pradeep Ravikumar UT Austin

School of ICASSP 2015

"Big-p" Data: large number of variables "p"

Across modern applications {images, signals, networks} many^many variables

fMRI images

variables: image voxels

gene expression profiles variables: genes

social networks

variables: users

• A critical question given a large number of variables of interest:

- A critical question given a large number of variables of interest:
 - What are the connections/dependencies among the variables?

- A critical question given a large number of variables of interest:
 - What are the connections/dependencies among the variables?
- Consider a visual representation of this problem: where the variables are represented as nodes of a graph, and edge weights represent dependencies

- A critical question given a large number of variables of interest:
 - What are the connections/dependencies among the variables?
- Consider a visual representation of this problem: where the variables are represented as nodes of a graph, and edge weights represent dependencion Gene Y

Gene 2

Gene Z

- A critical question given a large number of variables of interest:
 - What are the connections/dependencies among the variables?
- Consider a visual representation of this problem: where the variables are represented as nodes of a graph, and edge weights represent dependencion

Gene Y

Gene Z

• Estimating the dependencies among the variables is then equivalent to estimating such a weighted graph

• What dependencies between variables could we be interested in?

- What dependencies between variables could we be interested in?
 - Correlation? Gene X activity is highly correlated with Gene Z activity

- What dependencies between variables could we be interested in?
 - Correlation? Gene X activity is highly correlated with Gene Z activity
 - Causation? Gene X being active causes Gene Z to be active

- What dependencies between variables could we be interested in?
 - Correlation? Gene X activity is highly correlated with Gene Z activity
 - Causation? Gene X being active causes Gene Z to be active
 - **Conditional (In)dependence**: Given all other genes, are Gene X and Gene Z (*in*)dependent?

• **Conditional (In)dependence**: Given all other genes, are Gene X and Gene Y (*in*)dependent?

- **Conditional (In)dependence**: Given all other genes, are Gene X and Gene Y (*in*)dependent?
- X = "shoe-size" and Y = "gray-hair" are "marginally" dependent (think of small children with small shoe-sizes and no gray-hair)

- **Conditional (In)dependence**: Given all other genes, are Gene X and Gene Y (*in*)dependent?
- X = "shoe-size" and Y = "gray-hair" are "marginally" dependent (think of small children with small shoe-sizes and no gray-hair)
 - But "shoe size" and "gray hair" are common-sensically not directly associated

- **Conditional (In)dependence**: Given all other genes, are Gene X and Gene Y (*in*)dependent?
- X = "shoe-size" and Y = "gray-hair" are "marginally" dependent (think of small children with small shoe-sizes and no gray-hair)
 - But "shoe size" and "gray hair" are common-sensically not directly associated
 - Given Z = "age", the dependence vanishes away: they are conditionally independent

Conditional Independence Graph Structure

- Lack of an edge: lack of "direct dependence"
- no-edge(x,y) : x and y are independent given rest of nodes

 $X_3 \perp X_4 \mid \{X_1, X_2, X_5\}$

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

Edges indicate Markov independence conditions

Given some graph G representing the conditional independence edge structure among the vector of random variables X

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

- Given some graph G representing the conditional independence edge structure among the vector of random variables X
 - What is the set of distributions over X that respects this conditional independence structure (in other words, that satisfies all these conditional independences among the variables)

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

- Given some graph G representing the conditional independence edge structure among the vector of random variables X
 - What is the set of distributions over X that respects this conditional independence structure (in other words, that satisfies all these conditional independences among the variables)
 - This set of distributions is called the graphical model represented by G

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

Edges indicate Markov independence conditions

The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

Edges indicate Markov independence conditions

The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G
- Do these distributions have any particular algebraic form?

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G
- Do these distributions have any particular algebraic form?
- Hammersley Clifford: they always take the form of a product of local factors, each of which depend only on a clique (fully connected subgraph)

$$X_3 \perp X_4 \,|\, \{X_1, X_2, X_5\}$$

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G
- Do these distributions have any particular algebraic form?
- Hammersley Clifford: they always take the form of a product of local factors, each of which depend only on a clique (fully connected subgraph)

 $X_3 \perp X_4 \mid \{X_1, X_2, X_5\}$

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G
- Do these distributions have any particular algebraic form?
- Hammersley Clifford: they take the form of a product of local factors, each of which depend only on a clique (fully connected subgraph) $p(X) = \frac{1}{Z} \Psi_A(X_A) \Psi_B(X_B) \Psi_C(X_C)$

- The conditional independence graph structure, underlying a graphical model, is an object of interest in varied applications
 - network analysis, medical diagnosis, gene expression analyses, natural language processing,

Rosetta Informatics Compendium of gene expression profiles

Graphical Model Structure Selection

GIVEN: n samples of $X = (X_1, \ldots, X_p)$

drawn from some unknown graphical model distribution P(X; G) for some unknown graph G, recover the graph G.

Graphical Model Structure Selection

GIVEN: n samples of $X = (X_1, \ldots, X_p)$

drawn from some unknown graphical model distribution P(X; G) for some unknown graph G, recover the graph G.

- It is common to further assume a parametric model form for P(X; G)
 - Ising Models, Multinomial (Discrete) Models, Gaussian Graphical Models, ...

Examples: Parametric Graphical Models

$$p(X;\theta,G) = \frac{1}{Z(\theta)} \exp\left(\sum_{(s,t)\in E(G)} \theta_{st} \phi_{st}(X_s, X_t)\right)$$

$$\phi_{st}(x_s, x_t)$$
: arbitrary potential functions

Ising $x_s x_t$ Potts $I(x_s = x_t)$ Indicator $I(x_s, x_t = j, k)$

Parametric Graphical Model Selection

GIVEN: *n* samples of $X = (X_1, \ldots, X_p)$ with distribution $p(X; \theta^*; G)$, where

$$p(X;\theta^*) = \exp\left\{\sum_{(s,t)\in E(G)} \theta_{st}\phi_{st}(x_s, x_t) - A(\theta^*)\right\}$$

PROBLEM: Estimate graph G given just the n samples.

• Score Based Approaches: **search** over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)

- Score Based Approaches: **search** over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences

- Score Based Approaches: **search** over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats:

- Score Based Approaches: **search** over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats:
 - difficult to provide guarantees for estimators

- Score Based Approaches: **search** over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats:
 - difficult to provide guarantees for estimators
 - estimation problems they solve are NP-Hard

- Modern Approach: statistical estimation of the parametric graphical model subject to constraints on the underlying graph (e.g. edge bounds, degree bounds, etc.)
 - Caveats: such statistical estimation is not always computationally tractable; statistical guarantees plausible, but require advanced arguments
Graph-structure constrained MLE

$$\widehat{\theta} \in \arg \min_{\substack{\theta : \theta \in \Theta \\ \text{graph} \\ \text{constraints}}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log p(x^{(i)}; \theta) \right\}$$

- Statistical Estimation typically intractable because of
 - Graph Constraints: typically non-convex
 - Likelihood function: typically NP-Hard to compute

Outline: Graphical Model Selection

- Ising Models
- In brief: Gaussian Graphical Models, Multinomial Discrete Graphical Models
- In brief: a new class of parametric graphical models exponential family graphical models

GIVEN: *n* samples of $X = (X_1, \ldots, X_p)$ with distribution $p(X; \theta^*; G)$, where

$$p(X;\theta^*) = \exp\left\{\sum_{(s,t)\in E(G)} \theta^*_{st} X_s X_t - A(\theta^*)\right\}$$

GIVEN: *n* samples of $X = (X_1, \ldots, X_p)$ with distribution $p(X; \theta^*; G)$, where

$$p(X;\theta^*) = \exp\left\{\sum_{(s,t)\in E(G)} \theta^*_{st} X_s X_t - A(\theta^*)\right\}$$

Applications: statistical physics, computer vision, social network analysis

Just computing the likelihood of a known Ising model is NP Hard (since the normalization constant requires summing over exponentially many configurations)

$$Z(\theta) = \sum_{x \in \{-1,1\}^p} \exp\left(\sum_{st} \theta_{st} x_s x_t\right)$$

 Just computing the likelihood of a known Ising model is NP Hard (since the normalization constant requires summing over exponentially many configurations)

$$Z(\theta) = \sum_{x \in \{-1,1\}^p} \exp\left(\sum_{st} \theta_{st} x_s x_t\right)$$

 Estimating the **unknown** Ising model parameters as well as graph structure might seem to be NP Hard as well

 Just computing the likelihood of a known Ising model is NP Hard (since the normalization constant requires summing over exponentially many configurations)

$$Z(\theta) = \sum_{x \in \{-1,1\}^p} \exp\left(\sum_{st} \theta_{st} x_s x_t\right)$$

- Estimating the **unknown** Ising model parameters as well as graph structure might seem to be NP Hard as well
- On the other hand, it is tractable to estimate the node-wise conditional distributions, of one variable conditioned on the rest of the variables

For Ising models, node conditional distribution is just a logistic regression model:

$$p(X_r|X_{V\setminus r};\theta,G) = \frac{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t)}{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t) + 1}$$

For Ising models, node conditional distribution is just a logistic regression model:

$$p(X_r|X_{V\setminus r};\theta,G) = \frac{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t)}{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t) + 1}$$

 So instead of estimating graph structure constrained global Ising model, we could estimate structure constrained local node-conditional distributions logistic regression models

For Ising models, node conditional distribution is just a logistic regression model: $p(X_r|X_{V\setminus r};\theta,G) = \frac{\exp(\sum_{t\in N(r)} 2\,\theta_{rt}X_rX_t)}{\exp(\sum_{t\in N(r)} 2\,\theta_{rt}X_rX_t) + 1}$

- So instead of estimating graph structure constrained global Ising model, we could estimate structure constrained local node-conditional distributions logistic regression models
- But would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?

• Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?
- In general: no!

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?
- In general: no!
- But for the Ising model and node-wise logistic regression models: yes!

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?
- In general: no!
- But for the Ising model and node-wise logistic regression models: yes!
 - Theorem (Besag 1974, R., Wainwright, Lafferty 2010): An Ising model uniquely specifies and is uniquely specified by a set of node-wise logistic regression models.

For Ising models, node conditional distribution is just a logistic regression model: $p(X_r|X_{V\setminus r};\theta,G) = \frac{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t)}{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t) + 1}$

- Global graph constraint of sparse, bounded degree graphs is equivalent to local constraint of bounded node-degrees (number of neighbors)
- Estimate node neighborhoods via constrained logistic regression models, and stich node-neighborhoods together to form global graph

Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s) for all $s \in V$.

Method: Given *n* i.i.d. samples $\{X^{(1)}, \ldots, X^{(n)}\}$, perform logistic regression of each node X_s on $X_{\backslash s} := \{X_s, t \neq s\}$ to estimate neighborhood structure $\widehat{N}(s)$.

• For each node $s \in V$, perform ℓ_1 regularized logistic regression of X_s on the remaining variables $X_{\backslash s}$:

- 2 Estimate the local neighborhood $\widehat{N}(s)$ as the support (non-negative entries) of the regression vector $\widehat{\theta}[s]$.
- Observation Combine the neighborhood estimates in a consistent manner (AND, or OR rule).

Empirical behavior: Unrescaled plots

Sufficient conditions for consistent model selection

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (R., Wainwright, Lafferty, 2010)

$$heta_{LR}(n, p, d) := rac{n}{d^3 \log p} > heta_{
m crit}$$

and regularization parameter $\rho_n \ge c_1 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp\left(-c_2(\tau - 2) \log p\right) \rightarrow 1$:

- (a) Uniqueness: For each node $s \in V$, the ℓ_1 -regularized logistic convex program has a unique solution. (Non-trivial since $p \gg n \Longrightarrow$ not strictly convex).
- (b) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.
- (c) Correct inclusion: For $\theta_{\min} \ge c_3 \tau \sqrt{d} \rho_n$, the method selects the correct signed neighborhood.

Consequence: For $\theta_{\min} = \Omega(1/d)$, it suffices to have $n = \Omega(d^3 \log p)$.

Assumptions

Define Fisher information matrix of logistic regression: $Q^* := \mathbb{E}_{\theta^*} [\nabla^2 f(\theta^*; X)].$

A1. Dependency condition: Bounded eigenspectra:

$$C_{min} \leq \lambda_{min}(Q_{SS}^*), \text{ and } \lambda_{max}(Q_{SS}^*) \leq C_{max}.$$

 $\lambda_{max}(\mathbb{E}_{\theta^*}[XX^T]) \leq D_{max}.$

A2. Incoherence There exists an $\nu \in (0, 1]$ such that

$$\| Q_{S^{c}S}^{*}(Q_{SS}^{*})^{-1} \|_{\infty,\infty} \leq 1 - \nu.$$

where $\| A \|_{\infty,\infty} := \max_{i} \sum_{j} |A_{ij}|.$

- bounds on eigenvalues are fairly standard
- incoherence condition:
 - partly necessary (prevention of degenerate models)
 - ▶ partly an artifact of ℓ_1 -regularization
- incoherence condition is weaker than correlation decay

• Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.
- When variables are categorical, taking values in a finite set:
 - Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)
 - Applications: natural language processing, image analysis, bioinformatics

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.
- When variables are thin-tailed continuous
 - Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012)
 - Applications: widely used in bioinformatics e.g. genomic networks from micro-array data

Rosetta Informatics Compendium of gene expression profiles

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.
- When variables are categorical, taking values in a finite set:
 - Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)
- When variables are thin-tailed continuous
 - Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012)
- **Similar results** as in the Ising model case: estimate constrained nodeconditional distributions, and combine to estimate overall graph

 Classical parametric graphical model families — Ising, Multinomial/discrete, Gaussian models

- Classical parametric graphical model families Ising, Multinomial/discrete, Gaussian models
 - suited for binary, categorical/discrete, and thin-tailed continuous data respectively

- Classical parametric graphical model families Ising, Multinomial/discrete, Gaussian models
 - suited for binary, categorical/discrete, and thin-tailed continuous data respectively
- What if we have data that does not fall into these categories: skewed continuous, or count-valued for instance

- Classical parametric graphical model families Ising, Multinomial/discrete, Gaussian models
 - suited for binary, categorical/discrete, and thin-tailed continuous data respectively
- What if we have data that does not fall into these categories: skewed continuous, or count-valued for instance
 - Are there more general parametric graphical model families?

- Classical parametric graphical model families Ising, Multinomial/discrete, Gaussian models
 - suited for binary, categorical/discrete, and thin-tailed continuous data respectively
- What if we have data that does not fall into these categories: skewed continuous, or count-valued for instance
 - Are there more general parametric graphical model families?
 - Exponential Family Graphical Models (Yang, R., Allen, Liu 2012, 2014)

- Ising Models
 - node-conditional distribution: Bernoulli

- Ising Models
 - node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
 - node-conditional distribution: Multinomial

- Ising Models
 - node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
 - node-conditional distribution: Multinomial
- Gaussian Graphical model
 - node-conditional distribution: univariate Gaussian

- Ising Models
 - node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
 - node-conditional distribution: Multinomial
- Gaussian Graphical model
 - node-conditional distribution: univariate Gaussian
- Perhaps there's a pattern here ...

Background: Exponential Family Distributions

- Most common univariate distributions: Gaussian, Exponential, Bernoulli, Binomial, Poisson, Negative binomial, ...
- A broad class of distributions sharing a certain form:

$$P(X;\theta) = \exp\left\{\sum_{i\in\mathcal{I}} \theta_i B_i(X) + C(X) - A(\theta)\right\}$$

• Ingredients:

$$\theta = \{\theta_i\}_{i \in \mathcal{I}}$$

$$B(X) = \{B_i(X)\}_{i \in \mathcal{I}}$$

$$C(X)$$

$$A(\theta) = \log\left\{\sum_X \exp\langle\theta, B(X)\rangle + C(X)\right\}$$

Parameters Sufficient statistics Base measure Log-partition function

Towards Exponential Family Graphical Models

 Suppose each node-conditional distribution is specified by some exponential family distribution:

$P(X_s X_{V\setminus s})$	=	$\exp\{E_{s}(X_{V\setminus s})B_{s}(X_{s})+C_{s}(X_{s})-\bar{A}_{s}(X_{V\setminus s})\}$
$E_s(X_{V\setminus s})$		Parameters
$B_s(X)$		Sufficient statistics
$C_s(X)$		Base measure
$\bar{A}_{s}(\theta)$		Log-partition function

• **Key Question:** Does there exist a consistent joint distribution, and if so, is it unique?

Exponential Family Graphical Models

 Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are specified by exponential family distributions as in previous slide. Then there exists a unique joint distribution consistent with these node-conditional distributions, and moreover it takes the following form:

$$P(X) = \exp\left\{\sum_{s} \theta_{s} B_{s}(X_{s}) + \sum_{s \in V} \sum_{t \in N(s)} \theta_{st} B_{s}(X_{s}) B_{t}(X_{t}) + \dots + \sum_{s \in V} \sum_{t_{2}, \dots, t_{k} \in N(s)} \theta_{s \dots t_{k}} B_{s}(X_{s}) \prod_{j=2}^{k} B_{t_{j}}(X_{t_{j}}) + \sum_{s} C_{s}(X_{s}) - A(\theta)\right\}$$

Exponential Family Graphical Models

 Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are specified by exponential family distributions as in previous slide. Then there exists a unique joint distribution consistent with these node-conditional distributions, and moreover it takes the following form:

$$P(X) = \exp\left\{\sum_{s} \theta_{s} B_{s}(X_{s}) + \sum_{s \in V} \sum_{t \in N(s)} \theta_{st} B_{s}(X_{s}) B_{t}(X_{t}) + \dots + \sum_{s \in V} \sum_{t_{2}, \dots, t_{k} \in N(s)} \theta_{s \dots t_{k}} B_{s}(X_{s}) \prod_{j=2}^{k} B_{t_{j}}(X_{t_{j}}) + \sum_{s} C_{s}(X_{s}) - A(\theta)\right\}$$

 The joint distribution moreover is a graphical model distribution with respect to a graph G specified by the local Markov independencies satisfied by the node-conditional distributions
Example: Poisson Graphical Models

$$P(X) = \exp\left\{\sum_{s} \theta_{s} X_{s} + \sum_{(s,t)\in E} \theta_{st} X_{s} X_{t} + \sum_{s} \log(X_{s}!) - A(\theta)\right\}$$

 MicroRNA network learnt from The Cancer Genome Atlas (TCGA) Breast Cancer Level II Data

Example: Mixed Graphical Models

$$P(Y,Z) \propto \exp\left\{\sum_{s \in V_Y} \theta_s^Y Y_s + \sum_{s' \in V_Z} \theta_{s'}^Z Z_{s'} + \sum_{(s,t) \in E_Y} \theta_{st}^{yy} Y_s Y_t + \sum_{(s',t') \in E_Z} \theta_{s't'}^{zz} Z_{s'} Z_{t'} + \sum_{(s,s') \in E_{YZ}} \theta_{ss'}^{yz} Y_s Z_{s'} - \sum_{s \in V_Y} \log(Y_s!)\right\}$$

•

Poisson-Ising Models

Example: Mixed Graphical Models

• Combine 'Level III RNA-sequencing' data and 'Level II non-silent somatic mutation and level III copy number variation data' for 697 breast cancer patients.

- (Yellow) Gene expression via RNA-sequencing, count-valued
- (Blue) Genomic mutation, binary mutation status

Learning Exponential Family Graphical Models

• By construction, estimating exponential family graphical models is equivalent to estimate node-conditional univariate exponential family distributions

Learning Exponential Family Graphical Models

- By construction, estimating exponential family graphical models is equivalent to estimate node-conditional univariate exponential family distributions
- Graph Structure Learning Procedure:
 - Estimate graph-structure constrained node-conditional distributions, and estimate node-neighborhoods
 - Stitch node-neighborhoods together to form global graph estimate

Learning Exponential Family Graphical Models

- By construction, estimating exponential family graphical models is equivalent to estimate node-conditional univariate exponential family distributions
- Graph Structure Learning Procedure:
 - Estimate graph-structure constrained node-conditional distributions, and estimate node-neighborhoods
 - Stitch node-neighborhoods together to form global graph estimate
- Similar statistical guarantees for graphical model structure recovery as in Ising, Gaussian graphical model case can be showed even under this general setting (Yang, R., Allen, Liu 2014)

Experiments: Poisson Graphical Models

Poisson Graphical Model: 4NN Grid structure

Prob. of successful graph recovery vs. number of samples *n*

Prob. of successful graph recovery vs. re-scaled sample size $\beta = n/(c \log p)$

Thank You!