Learning Graphical Model Structure

Pradeep Ravikumar
UT Austin

School of ICASSP 2015

"Big-p" Data: large number of variables "p"

- Across modern applications \{images, signals, networks\} many^many variables

fMRI images
variables: image voxels

gene expression profiles
variables: genes

social networks
variables: users

"Big-p" Data

- A critical question given a large number of variables of interest:

"Big-p" Data

- A critical question given a large number of variables of interest:
-What are the connections/dependencies among the variables?

"Big-p" Data

- A critical question given a large number of variables of interest:
- What are the connections/dependencies among the variables?
- Consider a visual representation of this problem: where the variables are represented as nodes of a graph, and edge weights represent dependencies

"Big-p" Data

- A critical question given a large number of variables of interest:
- What are the connections/dependencies among the variables?
- Consider a visual representation of this problem: where the variables are represented as nodes of a graph, and edge weights represent dependenci

"Big-p" Data

- A critical question given a large number of variables of interest:
- What are the connections/dependencies among the variables?
- Consider a visual representation of this problem: where the variables are represented as nodes of a graph, and edge weights represent dependenc
- Estimating the dependencies among the variables is then equivalent to estimating such a weighted graph

Graph Structure

- What dependencies between variables could we be interested in?

Graph Structure

- What dependencies between variables could we be interested in?
- Correlation? Gene X activity is highly correlated with Gene Z activity

Graph Structure

- What dependencies between variables could we be interested in?
- Correlation? Gene X activity is highly correlated with Gene Z activity
- Causation? Gene X being active causes Gene Z to be active

Graph Structure

- What dependencies between variables could we be interested in?
- Correlation? Gene X activity is highly correlated with Gene Z activity
- Causation? Gene X being active causes Gene Z to be active
- Conditional (In)dependence: Given all other genes, are Gene X and Gene Z (in)dependent?

Graph Structure

- What dependencies between variables could we be interested in?
- Conditional (In)dependence: Given all other genes, are Gene X and Gene Y (in)dependent?

Graph Structure

- What dependencies between variables could we be interested in?
- Conditional (In)dependence: Given all other genes, are Gene X and Gene Y (in)dependent?
- $\mathrm{X}=$ "shoe-size" and $\mathrm{Y}=$ "gray-hair" are "marginally" dependent (think of small children with small shoe-sizes and no gray-hair)

Graph Structure

- What dependencies between variables could we be interested in?
- Conditional (In)dependence: Given all other genes, are Gene X and Gene Y (in)dependent?
- $\mathrm{X}=$ "shoe-size" and $\mathrm{Y}=$ "gray-hair" are "marginally" dependent (think of small children with small shoe-sizes and no gray-hair)
- But "shoe size" and "gray hair" are common-sensically not directly associated

Graph Structure

- What dependencies between variables could we be interested in?
- Conditional (In)dependence: Given all other genes, are Gene X and Gene Y (in)dependent?
- $\mathrm{X}=$ "shoe-size" and $\mathrm{Y}=$ "gray-hair" are "marginally" dependent (think of small children with small shoe-sizes and no gray-hair)
- But "shoe size" and "gray hair" are common-sensically not directly associated
- Given $Z=$ "age", the dependence vanishes away: they are conditionally independent

Conditional Independence Graph Structure

- Lack of an edge: lack of "direct dependence"
- no-edge $(x, y) \quad: x$ and y are independent given rest of nodes

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
Edges indicate Markov independence conditions

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence conditions

■ Given some graph G representing the conditional independence edge structure among the vector of random variables X

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence conditions

■ Given some graph G representing the conditional independence edge structure among the vector of random variables X

■ What is the set of distributions over X that respects this conditional independence structure (in other words, that satisfies all these conditional independences among the variables)

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence conditions

■ Given some graph G representing the conditional independence edge structure among the vector of random variables X

■ What is the set of distributions over X that respects this conditional independence structure (in other words, that satisfies all these conditional independences among the variables)
\square This set of distributions is called the graphical model represented by G

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
Edges indicate Markov independence
conditions

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
Edges indicate Markov independence
conditions

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence
 conditions

- The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

■ Do these distributions have any particular algebraic form?

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence conditions

■ The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

■ Do these distributions have any particular algebraic form?
■ Hammersley Clifford: they always take the form of a product of local factors, each of which depend only on a clique (fully connected subgraph)

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence conditions

■ The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

■ Do these distributions have any particular algebraic form?
■ Hammersley Clifford: they always take the form of a product of local factors, each of which depend only on a clique (fully connected subgraph)

Graphical Model Structure

$X_{3} \perp X_{4} \mid\left\{X_{1}, X_{2}, X_{5}\right\}$
 Edges indicate Markov independence conditions

■ The graphical model represented by G is a family of distributions that respects the conditional independence structure specified by G

■ Do these distributions have any particular algebraic form?
■ Hammersley Clifford: they take the form of a product of local factors, each of which depend only on a clique (fully connected subgraph)

$$
p(X)=\frac{1}{Z} \Psi_{A}\left(X_{A}\right) \Psi_{B}\left(X_{B}\right) \Psi_{C}\left(X_{C}\right)
$$

Graphical Model Structure

- The conditional independence graph structure, underlying a graphical model, is an object of interest in varied applications
- network analysis, medical diagnosis, gene expression analyses, natural language processing,

Graphical Model Structure Selection

Given: n samples of $X=\left(X_{1}, \ldots, X_{p}\right)$
drawn from some unknown graphical model distribution $\mathrm{P}(\mathrm{X} ; \mathrm{G})$ for some unknown graph G, recover the graph G.

?

Graphical Model Structure Selection

Given: n samples of $X=\left(X_{1}, \ldots, X_{p}\right)$
drawn from some unknown graphical model distribution $\mathrm{P}(\mathrm{X} ; \mathrm{G})$ for some unknown graph G, recover the graph G.

- It is common to further assume a parametric model form for $\mathrm{P}(\mathrm{X} ; \mathrm{G})$
- Ising Models, Multinomial (Discrete) Models, Gaussian Graphical Models, ...

Examples: Parametric Graphical Models

$$
p(X ; \theta, G)=\frac{1}{Z(\theta)} \exp \left(\sum_{(s, t) \in E(G)} \theta_{s t} \phi_{s t}\left(X_{s}, X_{t}\right)\right)
$$

$\phi_{s t}\left(x_{s}, x_{t}\right)$: arbitrary potential functions

$$
\begin{aligned}
\text { Ising } & x_{s} x_{t} \\
\text { Potts } & I\left(x_{s}=x_{t}\right) \\
\text { Indicator } & I\left(x_{s}, x_{t}=j, k\right)
\end{aligned}
$$

Parametric Graphical Model Selection

GIVEN: n samples of $X=\left(X_{1}, \ldots, X_{p}\right)$ with distribution $p\left(X ; \theta^{*} ; G\right)$, where

$$
p\left(X ; \theta^{*}\right)=\exp \left\{\sum_{(s, t) \in E(G)} \theta_{s t} \phi_{s t}\left(x_{s}, x_{t}\right)-A\left(\theta^{*}\right)\right\}
$$

Problem: Estimate graph G given just the n samples.

?

Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)

Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences

Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats:

Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats:
- difficult to provide guarantees for estimators

Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any graph (based on learning the parametric graphical model given the graph)
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats:
- difficult to provide guarantees for estimators
- estimation problems they solve are NP-Hard

Graphical Model Selection

- Modern Approach: statistical estimation of the parametric graphical model subject to constraints on the underlying graph (e.g. edge bounds, degree bounds, etc.)
- Caveats: such statistical estimation is not always computationally tractable; statistical guarantees plausible, but require advanced arguments

Graph-structure constrained MLE

$$
\hat{\theta} \in \arg \min _{\substack{\theta: \theta \in \Theta \\ \text { graph } \\ \text { constraints }}}\left\{-\frac{1}{n} \sum_{i=1}^{n} \log p\left(x^{(i)} ; \theta\right)\right\}
$$

- Statistical Estimation typically intractable because of
- Graph Constraints: typically non-convex
- Likelihood function: typically NP-Hard to compute

Outline: Graphical Model Selection

- Ising Models
- In brief: Gaussian Graphical Models, Multinomial Discrete Graphical Models
- In brief: a new class of parametric graphical models - exponential family graphical models

Ising Model Selection

Given: n samples of $X=\left(X_{1}, \ldots, X_{p}\right)$ with distribution $p\left(X ; \theta^{*} ; G\right)$, where

$$
p\left(X ; \theta^{*}\right)=\exp \left\{\sum_{(s, t) \in E(G)} \theta_{s t}^{*} X_{s} X_{t}-A\left(\theta^{*}\right)\right\}
$$

?

Ising Model Selection

GIven: n samples of $X=\left(X_{1}, \ldots, X_{p}\right)$ with distribution $p\left(X ; \theta^{*} ; G\right)$, where

$$
p\left(X ; \theta^{*}\right)=\exp \left\{\sum_{(s, t) \in E(G)} \theta_{s t}^{*} X_{s} X_{t}-A\left(\theta^{*}\right)\right\}
$$

Applications: statistical physics, computer vision, social network analysis

Ising Model Selection

- Just computing the likelihood of a known Ising model is NP Hard (since the normalization constant requires summing over exponentially many configurations)

$$
Z(\theta)=\sum_{x \in\{-1,1\}^{p}} \exp \left(\sum_{s t} \theta_{s t} x_{s} x_{t}\right)
$$

Ising Model Selection

- Just computing the likelihood of a known Ising model is NP Hard (since the normalization constant requires summing over exponentially many configurations)

$$
Z(\theta)=\sum_{x \in\{-1,1\}^{p}} \exp \left(\sum_{s t} \theta_{s t} x_{s} x_{t}\right)
$$

- Estimating the unknown Ising model parameters as well as graph structure might seem to be NP Hard as well

Ising Model Selection

- Just computing the likelihood of a known Ising model is NP Hard (since the normalization constant requires summing over exponentially many configurations)

$$
Z(\theta)=\sum_{x \in\{-1,1\}^{p}} \exp \left(\sum_{s t} \theta_{s t} x_{s} x_{t}\right)
$$

- Estimating the unknown Ising model parameters as well as graph structure might seem to be NP Hard as well
- On the other hand, it is tractable to estimate the node-wise conditional distributions, of one variable conditioned on the rest of the variables

Neighborhood Estimation in Ising Models

For Ising models, node conditional
 distribution is just a logistic regression model:

$$
p\left(X_{r} \mid X_{V \backslash r} ; \theta, G\right)=\frac{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)}{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)+1}
$$

Neighborhood Estimation in Ising Models

For Ising models, node conditional
 distribution is just a logistic regression model:

$$
p\left(X_{r} \mid X_{V \backslash r} ; \theta, G\right)=\frac{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)}{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)+1}
$$

- So instead of estimating graph structure constrained global Ising model, we could estimate structure constrained local node-conditional distributions logistic regression models

Neighborhood Estimation in Ising Models

For Ising models, node conditional
 distribution is just a logistic regression model:

$$
p\left(X_{r} \mid X_{V \backslash r} ; \theta, G\right)=\frac{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)}{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)+1}
$$

- So instead of estimating graph structure constrained global Ising model, we could estimate structure constrained local node-conditional distributions logistic regression models
- But would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?

Conditional and Joint Distributions

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?

Conditional and Joint Distributions

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?
- In general: no!

Conditional and Joint Distributions

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?
- In general: no!
- But for the Ising model and node-wise logistic regression models: yes!

Conditional and Joint Distributions

- Would node-conditional distributions uniquely specify a consistent joint, or even be consistent with any joint at all?
- In general: no!
- But for the Ising model and node-wise logistic regression models: yes!
- Theorem (Besag 1974, R., Wainwright, Lafferty 2010): An Ising model uniquely specifies and is uniquely specified by a set of node-wise logistic regression models.

Neighborhood Estimation in Ising Models

For Ising models, node conditional
 distribution is just a logistic regression model:

$$
p\left(X_{r} \mid X_{V \backslash r} ; \theta, G\right)=\frac{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)}{\exp \left(\sum_{t \in N(r)} 2 \theta_{r t} X_{r} X_{t}\right)+1}
$$

- Global graph constraint of sparse, bounded degree graphs is equivalent to local constraint of bounded node-degrees (number of neighbors)
- Estimate node neighborhoods via constrained logistic regression models, and stich node-neighborhoods together to form global graph

Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set $N(s)$ for all $s \in V$.

Method: Given n i.i.d. samples $\left\{X^{(1)}, \ldots, X^{(n)}\right\}$, perform logistic regression of each node X_{s} on $X_{\backslash s}:=\left\{X_{s}, t \neq s\right\}$ to estimate neighborhood structure $\widehat{N}(s)$.
(1) For each node $s \in V$, perform ℓ_{1} regularized logistic regression of X_{s} on the remaining variables $X_{\backslash s}$:

$$
\widehat{\theta}[s]:=\arg \min _{\theta \in \mathbb{R}^{p-1}}\{\frac{1}{n} \sum_{i=1}^{n} \underbrace{f\left(\theta ; X_{\backslash s}^{(i)}\right)}_{\text {logistic likelihood }}+\rho_{n} \underbrace{\|\theta\|_{1}}_{\text {regularization }}\}
$$

(2) Estimate the local neighborhood $\widehat{N}(s)$ as the support (non-negative entries) of the regression vector $\widehat{\theta}[s]$.
(3) Combine the neighborhood estimates in a consistent manner (AND, or OR rule).

Empirical behavior: Unrescaled plots

Sufficient conditions for consistent model selection

- graph sequences $G_{p, d}=(V, E)$ with p vertices, and maximum degree d.
- edge weights $\left|\theta_{s t}\right| \geq \theta_{\text {min }}$ for all $(s, t) \in E$
- draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (R., Wainwright, Lafferty, 2010)

$$
\theta_{L R}(n, p, d):=\frac{n}{d^{3} \log p}>\theta_{\text {crit }}
$$

and regularization parameter $\rho_{n} \geq c_{1} \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1-2 \exp \left(-c_{2}(\tau-2) \log p\right) \rightarrow 1$:
(a) Uniqueness: For each node $s \in V$, the ℓ_{1}-regularized logistic convex program has a unique solution. (Non-trivial since $p \gg n \Longrightarrow$ not strictly convex).
(b) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.
(c) Correct inclusion: For $\theta_{\min } \geq c_{3} \tau \sqrt{d} \rho_{n}$, the method selects the correct signed neighborhood.

Consequence: For $\theta_{\min }=\Omega(1 / d)$, it suffices to have $n=\Omega\left(d^{3} \log p\right)$.

Assumptions

Define Fisher information matrix of logistic regression:
$Q^{*}:=\mathbb{E}_{\theta^{*}}\left[\nabla^{2} f\left(\theta^{*} ; X\right)\right]$.
A1. Dependency condition: Bounded eigenspectra:

$$
\begin{gathered}
C_{\min } \leq \lambda_{\min }\left(Q_{S S}^{*}\right), \quad \text { and } \quad \lambda_{\max }\left(Q_{S S}^{*}\right) \leq C_{\max } . \\
\lambda_{\max }\left(\mathbb{E}_{\theta^{*}}\left[X X^{T}\right]\right) \quad \leq \quad D_{\max }
\end{gathered}
$$

A2. Incoherence There exists an $\nu \in(0,1]$ such that

$$
\begin{aligned}
& \qquad\left\|Q_{S^{c} S}^{*}\left(Q_{S S}^{*}\right)^{-1}\right\|_{\infty, \infty} \leq 1-\nu . \\
& \text { where }\|A\|_{\infty, \infty}:=\max _{i} \sum_{j}\left|A_{i j}\right|
\end{aligned}
$$

- bounds on eigenvalues are fairly standard
- incoherence condition:
- partly necessary (prevention of degenerate models)
- partly an artifact of ℓ_{1}-regularization
- incoherence condition is weaker than correlation decay

Multinomial, Gaussian Graphical Models

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.

Multinomial, Gaussian Graphical Models

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.
- When variables are categorical, taking values in a finite set:
- Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)
- Applications: natural language processing, image analysis, bioinformatics

Multinomial, Gaussian Graphical Models

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.
- When variables are thin-tailed continuous
- Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012)
- Applications: widely used in bioinformatics e.g. genomic networks from micro-array data

Multinomial, Gaussian Graphical Models

- Ising models are a specific parametric graphical model family, suited to the case where the variables are binary.
- When variables are categorical, taking values in a finite set:
- Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)
- When variables are thin-tailed continuous
- Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012)
- Similar results as in the Ising model case: estimate constrained nodeconditional distributions, and combine to estimate overall graph

Parametric Graphical Models

- Classical parametric graphical model families -Ising, Multinomial/discrete, Gaussian models

Parametric Graphical Models

- Classical parametric graphical model families -Ising, Multinomial/discrete, Gaussian models
- suited for binary, categorical/discrete, and thin-tailed continuous data respectively

Parametric Graphical Models

- Classical parametric graphical model families -Ising, Multinomial/discrete, Gaussian models
- suited for binary, categorical/discrete, and thin-tailed continuous data respectively
- What if we have data that does not fall into these categories: skewed continuous, or count-valued for instance

Parametric Graphical Models

- Classical parametric graphical model families -Ising, Multinomial/discrete, Gaussian models
- suited for binary, categorical/discrete, and thin-tailed continuous data respectively
- What if we have data that does not fall into these categories: skewed continuous, or count-valued for instance
- Are there more general parametric graphical model families?

Parametric Graphical Models

- Classical parametric graphical model families -Ising, Multinomial/discrete, Gaussian models
- suited for binary, categorical/discrete, and thin-tailed continuous data respectively
- What if we have data that does not fall into these categories: skewed continuous, or count-valued for instance
- Are there more general parametric graphical model families?
- Exponential Family Graphical Models (Yang, R., Allen, Liu 2012, 2014)

Recap: Classical Parametric Graphical Models

- Ising Models
- node-conditional distribution: Bernoulli

Recap: Classical Parametric Graphical Models

- Ising Models
- node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
- node-conditional distribution: Multinomial

Recap: Classical Parametric Graphical Models

- Ising Models
- node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
- node-conditional distribution: Multinomial
- Gaussian Graphical model
- node-conditional distribution: univariate Gaussian

Recap: Classical Parametric Graphical Models

- Ising Models
- node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
- node-conditional distribution: Multinomial
- Gaussian Graphical model
- node-conditional distribution: univariate Gaussian
- Perhaps there's a pattern here ...

Background: Exponential Family Distributions

- Most common univariate distributions: Gaussian, Exponential, Bernoulli, Binomial, Poisson, Negative binomial, ...
- A broad class of distributions sharing a certain form:

$$
P(X ; \theta)=\exp \left\{\sum_{i \in \mathcal{I}} \theta_{i} B_{i}(X)+C(X)-A(\theta)\right\}
$$

- Ingredients:

$$
\begin{array}{ll}
\theta=\left\{\theta_{i}\right\}_{i \in \mathcal{I}} & \text { Parameters } \\
B(X)=\left\{B_{i}(X)\right\}_{i \in \mathcal{I}} & \text { Sufficient statistics } \\
C(X) & \text { Base measure } \\
A(\theta)=\log \left\{\sum_{X} \exp \langle\theta, B(X)\rangle+C(X)\right\} & \text { Log-partition function }
\end{array}
$$

Towards Exponential Family Graphical Models

- Suppose each node-conditional distribution is specified by some exponential family distribution:

```
P(\mp@subsup{X}{s}{}|\mp@subsup{X}{V\s}{})=\operatorname{exp}{\mp@subsup{E}{s}{}(\mp@subsup{X}{V\s}{})\mp@subsup{B}{s}{}(\mp@subsup{X}{s}{})+\mp@subsup{C}{s}{}(\mp@subsup{X}{s}{})-\mp@subsup{\overline{A}}{s}{}(\mp@subsup{X}{V\s}{})}
    Es}(\mp@subsup{X}{V\s}{\prime})\quad\mathrm{ Parameters
    B
    C
    \mp@subsup{\overline{A}}{s}{}(0)\quad Log-partition function
```

- Key Question: Does there exist a consistent joint distribution, and if so, is it unique?

Exponential Family Graphical Models

- Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are specified by exponential family distributions as in previous slide. Then there exists a unique joint distribution consistent with these node-conditional distributions, and moreover it takes the following form:

$$
\begin{aligned}
P(X)= & \exp \left\{\sum_{s} \theta_{s} B_{s}\left(X_{s}\right)+\sum_{s \in V} \sum_{t \in N(s)} \theta_{s t} B_{s}\left(X_{s}\right) B_{t}\left(X_{t}\right)+\ldots\right. \\
& \left.+\sum_{s \in V} \sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{s \ldots t_{k}} B_{s}\left(X_{s}\right) \prod_{j=2}^{k} B_{t_{j}}\left(X_{t_{j}}\right)+\sum_{s} C_{s}\left(X_{s}\right)-A(\theta)\right\}
\end{aligned}
$$

Exponential Family Graphical Models

- Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are specified by exponential family distributions as in previous slide. Then there exists a unique joint distribution consistent with these node-conditional distributions, and moreover it takes the following form:

$$
\begin{aligned}
P(X)= & \exp \left\{\sum_{s} \theta_{s} B_{s}\left(X_{s}\right)+\sum_{s \in V} \sum_{t \in N(s)} \theta_{s t} B_{s}\left(X_{s}\right) B_{t}\left(X_{t}\right)+\ldots\right. \\
& \left.+\sum_{s \in V} \sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{s \ldots t_{k}} B_{s}\left(X_{s}\right) \prod_{j=2}^{k} B_{t_{j}}\left(X_{t_{j}}\right)+\sum_{s} C_{s}\left(X_{s}\right)-A(\theta)\right\}
\end{aligned}
$$

- The joint distribution moreover is a graphical model distribution with respect to a graph G specified by the local Markov independencies satisfied by the node-conditional distributions

Example: Poisson Graphical Models

$$
P(X)=\exp \left\{\sum_{s} \theta_{s} X_{s}+\sum_{(s, t) \in E} \theta_{s t} X_{s} X_{t}+\sum_{s} \log \left(X_{s}!\right)-A(\theta)\right\}
$$

- MicroRNA network learnt from The Cancer Genome Atlas (TCGA) Breast Cancer Level II Data

Example: Mixed Graphical Models

$$
\begin{aligned}
P(Y, Z) \propto & \exp \left\{\sum_{s \in V_{Y}} \theta_{s}^{Y} Y_{s}+\sum_{s^{\prime} \in V_{Z}} \theta_{s^{\prime}}^{z} Z_{s^{\prime}}+\sum_{(s, t) \in E_{Y}} \theta_{s t}^{y y} Y_{s} Y_{t}\right. \\
& \left.+\sum_{\left(s^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{s^{\prime} t^{\prime}}^{z z} Z_{s^{\prime}} Z_{t^{\prime}}+\sum_{\left(s, s^{\prime}\right) \in E_{Y Z}} \theta_{s s^{\prime}}^{y z} Y_{s} Z_{s^{\prime}}-\sum_{s \in V_{Y}} \log \left(Y_{s}!\right)\right\} .
\end{aligned}
$$

Poisson-Ising Models

Example: Mixed Graphical Models

- Combine 'Level III RNA-sequencing' data and 'Level II non-silent somatic mutation and level III copy number variation data' for 697 breast cancer patients.

- (Yellow) Gene expression via RNA-sequencing, count-valued
- (Blue) Genomic mutation, binary mutation status

Learning Exponential Family Graphical Models

- By construction, estimating exponential family graphical models is equivalent to estimate node-conditional univariate exponential family distributions

Learning Exponential Family Graphical Models

- By construction, estimating exponential family graphical models is equivalent to estimate node-conditional univariate exponential family distributions
- Graph Structure Learning Procedure:
- Estimate graph-structure constrained node-conditional distributions, and estimate node-neighborhoods
- Stitch node-neighborhoods together to form global graph estimate

Learning Exponential Family Graphical Models

- By construction, estimating exponential family graphical models is equivalent to estimate node-conditional univariate exponential family distributions
- Graph Structure Learning Procedure:
- Estimate graph-structure constrained node-conditional distributions, and estimate node-neighborhoods
- Stitch node-neighborhoods together to form global graph estimate
- Similar statistical guarantees for graphical model structure recovery as in Ising, Gaussian graphical model case can be showed even under this general setting (Yang, R., Allen, Liu 2014)

Experiments: Poisson Graphical Models

- Poisson Graphical Model: 4NN Grid structure

Prob. of successful graph recovery vs. number of samples n

Prob. of successful graph recovery vs. re-scaled sample size
$\beta=n /(c \log p)$

Thank You!

