Support Recovery from Covariance Information using Non-Negative Quadratic Programming

Lekshmi Ramesh

Signal Processing for Communications Lab
IISc, Bangalore

October 30, 2016

Problem setup

- Model: Observations $\left\{y_{i}\right\}_{i=1}^{L}$ are generated from the following linear model:

$$
y_{i}=\Phi x_{i}+w_{i}, \quad i \in[L],
$$

where $\Phi \in \mathbb{R}^{m \times N}(m<N), x_{i}$ unknown, random taking values in \mathbb{R}^{N} and $w_{i} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$.

- Assumptions:
- $\operatorname{supp}\left(x_{i}\right)=T$ for some $T \subset[N]$ with $|T|=k, \forall i \in[L]$
- $\mathbb{E}\left[x_{t, i} x_{t, j}\right]=0, t \in[L], i, j \in T$

Problem Setup

■ We impose the following prior on x_{i}

$$
\begin{aligned}
& p\left(x_{i} ; \gamma\right)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \gamma_{j}} \exp \left(-\frac{x_{i j}^{2}}{2 \gamma_{j}}\right) \\
& \text { i.e., } x_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Gamma) \text { where } \Gamma=\operatorname{diag}(\gamma)
\end{aligned}
$$

■ Goal: Recover the common support T from $\left\{y_{i}\right\}_{i=1}^{L}$

- Note:
- $\operatorname{supp}\left(x_{i}\right)=\operatorname{supp}(\gamma)=T \quad\left(\right.$ since $\gamma_{j}=0 \Leftrightarrow x_{i j}=0 \quad$ a.s. $)$
- $y_{i} \sim \mathcal{N}(0, \underbrace{\Phi \Gamma \Phi^{\top}+\sigma^{2} I}_{\Sigma \in \mathbb{R}^{m \times m}})$

■ Equivalent problem: Recover Γ from an estimate of Σ

- We work with the sample covariance matrix $\hat{\Sigma}$
- Express $\hat{\Sigma}$ as

$$
\hat{\Sigma}=\Sigma+N
$$

where N : Noise/Error matrix.

- Equivalently (for $\sigma^{2}=0$),

$$
\begin{aligned}
& \hat{\Sigma}=\Phi \Gamma \Phi^{\top}+N \\
& \quad \downarrow \text { vectorize } \\
& r=\underbrace{(\Phi \odot \Phi)}_{A \in \mathbb{R}^{m^{2} \times N}} \gamma+n
\end{aligned}
$$

$(\odot$ denotes the Khatri-Rao product)

■ We will find the Maximum-Likelihood estimate of γ. For that, we first derive the noise statistics.

Noise Statistics

■ Mean

$$
\mathbb{E} N=\frac{1}{L} \sum_{i=1}^{L} \mathbb{E} y_{i} y_{i}^{\top}-\Sigma=0
$$

■ Covariance

$$
\begin{aligned}
\operatorname{cov}(N) & =\operatorname{cov}\left(\frac{1}{L} \sum_{i=1}^{L} y_{i} y_{i}^{\top}-\Sigma\right) \\
& =\operatorname{cov}\left(\sum_{i=1}^{L}\left(\frac{y_{i} y_{i}^{\top}}{L}-\frac{\Sigma}{L}\right)\right) \\
& =L \operatorname{cov}\left(\frac{y_{1} y_{1}^{\top}}{L}-\frac{\Sigma}{L}\right) \\
& =\frac{1}{L} \operatorname{cov}\left(y_{1} y_{1}^{\top}-\Sigma\right) \\
& =\frac{1}{L} \operatorname{cov}\left(y y^{\top}\right) .
\end{aligned}
$$

■ Represent y as

$$
y=C z,
$$

where $z \sim \mathcal{N}(0, I)$ and $\Sigma=C C^{\top}$.
For $\sigma^{2}=0$, we can take $C=\Phi \Gamma^{\frac{1}{2}}$

$$
\begin{aligned}
\operatorname{cov}(\operatorname{vec}(N)) & =\frac{1}{L} \operatorname{cov}\left(\operatorname{vec}\left(C z z^{\top} C^{\top}\right)\right) \\
& =\frac{1}{L} \operatorname{cov}\left((C \otimes C) \operatorname{vec}\left(z z^{\top}\right)\right) \\
& =\frac{1}{L}(C \otimes C) \operatorname{cov}\left(\operatorname{vec}\left(z z^{\top}\right)\right)(C \otimes C)^{\top} \\
& =\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) \underbrace{\operatorname{cov}\left(\operatorname{vec}\left(z z^{\top}\right)\right.}_{B \in \mathbb{R}^{N^{2} \times N^{2}}}\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top}
\end{aligned}
$$

■ Last step: use $(A \otimes B)(C \otimes D)=A B \otimes C D$

Example: $N=3$

- Let $z=\left[z_{1}, z_{2}, z_{3}\right]^{\top}$ with $z_{i} \sim \mathcal{N}(0,1)$. Then,

$$
z z^{\top}=\left[\begin{array}{ccc}
z_{1}^{2} & z_{1} z_{2} & z_{1} z_{3} \\
z_{1} z_{2} & z_{2}^{2} & z_{2} z_{3} \\
z_{1} z_{3} & z_{2} z_{3} & z_{3}^{2}
\end{array}\right] \xrightarrow{\text { vectorize }}\left[\begin{array}{c}
z_{1}^{2} \\
z_{1} z_{2} \\
z_{1} z_{3} \\
z_{1} z_{2} \\
z_{2}^{2} \\
z_{2} z_{3} \\
z_{1} z_{3} \\
z_{2} z_{3} \\
z_{3}^{2}
\end{array}\right]
$$

- The covariance matrix B of $\operatorname{vec}\left(z z^{\top}\right)$ will be of size 9×9 with $B_{i, j} \in\{0,1,2\}, 1 \leq i, j \leq 3$.
- For e.g.,

$$
\begin{aligned}
& B_{1,1}=\operatorname{cov}\left(z_{1}^{2}, z_{1}^{2}\right)=\mathbb{E} z_{1}^{4}-\left(\mathbb{E} z_{1}^{2}\right)^{2}=3-1=2 \\
& B_{1,2}=\operatorname{cov}\left(z_{1}^{2}, z_{1} z_{2}\right)=\mathbb{E} z_{1}^{3} z_{2}-\mathbb{E} z_{1}^{2} \mathbb{E} z_{1} z_{2}=0 \\
& B_{2,4}=\operatorname{cov}\left(z_{1} z_{2}, z_{1} z_{2}\right)=\mathbb{E} z_{1}^{2} z_{2}^{2}-\mathbb{E} z_{1} z_{2} \mathbb{E} z_{1} z_{2}=1
\end{aligned}
$$

$$
B=\operatorname{cov}\left(\operatorname{vec}\left(z z^{\top}\right)\right)=\left[\begin{array}{ccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

- We now have the following model

$$
\begin{equation*}
r=A \gamma+n \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
A & =(\Phi \odot \Phi), \\
\mathbb{E}[n] & =0, \\
\operatorname{cov}(n) & =W=\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) B\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top} .
\end{aligned}
$$

Observations

- The noise term vanishes as $L \rightarrow \infty$
- The noise covariance depends on the parameter to be estimated

■ $r, \Phi \odot \Phi$ and n have redundant entries - restrict to the $\frac{m(m+1)}{2}$ distinct entries

New model, Gaussian approximation

- Pre-multiply (1) by $P \in \mathbb{R}^{\frac{m(m+1)}{2} \times m^{2}}$, formed using a subset of the rows of $I_{m^{2}}$, that picks the relevant entries. Thus,

$$
r_{P}=A_{P} \gamma+n_{P}
$$

where $r_{P}:=\operatorname{Pr}, A_{P}:=P A$, and $n_{P}:=P n$.

- Further, we approximate the distribution of n_{P} by $\mathcal{N}\left(0, W_{P}\right)$, where $W_{P}=P W P^{\top}$
- Thus, $r_{P} \sim \mathcal{N}\left(A_{P} \gamma, W_{P}\right)$.

ML estimation of γ

■ Denote the ML estimate of γ by $\gamma_{M L}$

$$
\begin{equation*}
\gamma_{M L}=\underset{\gamma \geq 0}{\arg \max } p\left(r_{P} ; \gamma\right) \tag{2}
\end{equation*}
$$

where
$p\left(r_{P} ; \gamma\right)=\frac{1}{(2 \pi)^{\frac{m(m+1)}{4}}\left|W_{P}\right|^{\frac{1}{2}}} \exp \left(\frac{-\left(r_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(r_{P}-A_{p} \gamma\right)}{2}\right)$.

■ Simplifying (2), we get

$$
\begin{equation*}
\gamma_{M L}=\underset{\gamma \geq 0}{\arg \min } \log \left|W_{P}\right|+\left(r_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(r_{P}-A_{p} \gamma\right) . \tag{3}
\end{equation*}
$$

■ To solve (3) (recall W_{P} depends on γ):

- Initialize W_{P}

■ Solve

$$
\underset{\gamma \geq 0}{\arg \min }\left(r_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(r_{P}-A_{p} \gamma\right)
$$

- Recompute W_{P} and iterate

Non-negative quadratic program

$$
\underset{\gamma \geq 0}{\operatorname{minimize}}\left(r_{P}-A_{P} \gamma\right) W_{P}^{-1}\left(r_{P}-A_{p} \gamma\right)^{\top}
$$

Solution (entry-wise update equation for γ):

$$
\gamma_{j}^{(i+1)}=\gamma_{j}^{(i)}\left(\frac{-b_{j}+\sqrt{b_{j}^{2}+4\left(Q^{+} \gamma^{(i)}\right)_{j}\left(Q^{-} \gamma^{(i)}\right)_{j}}}{2\left(Q^{+} \gamma^{(i)}\right)_{j}}\right)
$$

where $b=-A_{P}^{\top} W_{P}^{-1} r_{P}, Q=A_{P}^{\top} W_{P}^{-1} A_{P}$,

$$
Q_{i j}^{+}= \begin{cases}Q_{i j}, & \text { if } \quad Q_{i j}>0 \\ 0, & \text { otherwise }\end{cases}
$$

$$
Q_{i j}^{-}= \begin{cases}-Q_{i j}, & \text { if } \quad Q_{i j}<0 \\ 0, & \text { otherwise }\end{cases}
$$

Support recovery performance

$N=52, m=7, L=30$; exact recovery over 200 trials

Figure 1: Support recovery performance of the NNP-based approach ${ }_{18 / 23}$

Support recovery performance

$N=52, m=8, L=30$; exact recovery over 200 trials

Figure 2: Support recovery performance of the NNQP-based approach ${ }_{19 / 23}$

Support recovery performance

$N=37, m=10, k=9$; exact recovery over 200 trials

Figure 3: Support recovery performance of the NNQP-based approach ${ }_{20} / 23$

Support recovery performance

$N=37, m=10, k=15$; exact recovery over 200 trials

Figure 4: Support recovery performance of the NNQP-based approach ${ }_{21 / 23}$

Observations, Future Work

- Observations
- Exact support recovery possible for $k<m$ with 'small' L
- For $m \leq k \leq \alpha m$ for some $1 \leq \alpha<\frac{N}{m}$, recovery possible with 'large' L
- Runtime of the NNQP-based algorithm does not scale with L, but scales with m, N
- Future Work
- Study the behavior of the Restricted Isometry Constant of the matrix A_{P}
- Develop a faster algorithm for solving the maximum-likelihood problem

References

Sha, F., L. K. Saul, and D. D. Lee. "Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines". In: Neural Information Processing Systems (2002).

