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General Optimization Problem

min
A∈M

f (A)

I M⊂ Rm×n: constraint set
I f :M→ R: real valued function

Example:
Find A ∈ Rn×n

to minimize ‖A− A0‖F
subject to rank(A) = p, A � 0
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Constraint set: matrix manifolds

A topological spaceM is a d−dimensional manifold if
1. it has a countable basis
2. distinct points inM have disjoint neighborhoods
3. for open subsets Uα ⊆M such thatM = ∪αUα there exist a

continuous inverse function φα : Uα → Rd

Example: Circle (d = 1)

φtop(x , y) = x
φbottom(x , y) = x
φleft(x , y) = y
φright(x , y) = y
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First Order Geometry

I Tangent bundle TM: set of all tangent vectors
I Any element of a Riemannian manifold can be uniquely

decomposed into two spaces
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Example: Tangent Space to a Sphere

I For any curve x(t) such that x(0) = x0,
we have x(t)Tx(t) = 1, thus
˙x(0) ∈ {ξ ∈ Rn : xT

0 ξ = 0}
I For any ξ : xT

0 ξ, the curve x(t) = x0+tξ
‖x0+tξ‖

gives ˙x(0) = ξ

Tx0S
n−1 = {ξ ∈ Rn : xT

0 ξ = 0}
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Line Search Methods

I Basic iterative approach to find a local minimum of an objective
function f : Rn → R

xk+1 = xk + tk dk

I tk : step size
I dk : search direction

Retraction: optimization over matrix manifold
I Moving in the direction of a tangent vector
I Staying on the manifold

xk+1 = Rxk (tk dk )
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Concept of Retraction

Retraction on a manifold
Smooth mapping R : TM→M:

1. Rx(0) = x
2. d

dt Rx(tv)|t=0 = v

I Map elements of TM into points ofM
I Transform cost functions defined in a neighborhood of x ∈M

into cost functions defined on the vector space TM: f (Rx(·))
Example: Retraction on Sphere Sn−1

Rx(ξ) =
x + ξ

‖x + ξ‖
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Choices for global convergence

xk+1 = Rxk (tk dk )

Search direction{dk}k : gradient-related
For any subsequence of {xk}k∈K⊂N → non-critical point of f , {dk}k∈K
is bounded and

lim sup
k→∞k∈K

〈grad(f (xk )),dk 〉 < 0.

Step size tk : Armijo point βmγ

Compute smallest integer m ≥ 0 such that

f (xk )− f (Rxk (β
mγdk )) ≥ −c〈grad(f (x)), βmγdk 〉︸ ︷︷ ︸

≤0

.

scalars γ > 0, β, c ∈ (0,1)
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Accelarated Line Search

Input: Retraction R onM; scalars γ > 0, β, c ∈ (0,1)

for k = 0,1,2, . . . do

Pick dk from the tangent space of xk such that the sequence
{dk}k is gradient-related

Compute Armijo step size tk = βmγ with smallest m such that

f (x)− f (Rx(β
mγd)) ≥ −c 〈grad(f (x)), βmγd〉 .

Update the iterate: xk+1 = Rxk (tk dk )

end for

Output: Sequence of iterates {xk}
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Rayleigh Quotient Minimization on Sn−1

I cost: f (x) = xTAx ; x ∈ Sn−1

I tangent space: {ξ ∈ Rn : xTξ = 0}
I normal space: {ξ ∈ Rn : ξ = αx}
I projection onto tangent space:

Px(ξ) = (I − xxT)ξ

I grad(f (x)) = 2(Ax − xxTAx)
I retraction: Rx(ξ) =

x+ξ
‖x+ξ‖

Algorithm
Input: scalars γ > 0, β, c ∈ (0,1)

Initilize x0 ∈ Sn−1

for k = 0,1,2, . . . do

dk = 2(Axk − xk xT
k Axk )

Find smallest integer m > 0:
f (x)−f (Rx(β

mγdk )) ≥ cβmγ ‖dk‖2

xk+1 = Rxk (β
mγdk )

end for

Output: Sequence of iterates {xk}
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Convergence Results

Let x∗ be a subsequential limit of sequence {xk}, then for real
analytic function f ,

I x∗ → a critical point of f
I IfM is compact, ‖grad(f (xk ))‖ → 0
I If x∗ is not local minimum, it is unstable
I If x∗ is an isolated local minimum, then it is asymptoically stable
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Summary

I Problem: Optimization of a real-valued function on a matrix
manifold

I Algorithm: Line search methods
I Advantage: Fast and strong convergence properties

Geethu Joseph Line Search Algorithm


	problem

