Line Search Algorithms on Matrix Manifolds

Geethu Joseph

September 2, 2017

General Optimization Problem

•
$$\mathcal{M} \subset \mathbb{R}^{m \times n}$$
: constraint set

• $f: \mathcal{M} \to \mathbb{R}$: real valued function

Find
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$

to minimize $\|\mathbf{A} - \mathbf{A}_0\|_F$
subject to $rank(\mathbf{A}) = p, \mathbf{A} \succeq \mathbf{0}$

Constraint set: matrix manifolds

A topological space \mathcal{M} is a *d*-dimensional manifold if

- 1. it has a countable basis
- 2. distinct points in $\ensuremath{\mathcal{M}}$ have disjoint neighborhoods
- 3. for open subsets $U_{\alpha} \subseteq \mathcal{M}$ such that $\mathcal{M} = \bigcup_{\alpha} U_{\alpha}$ there exist a continuous inverse function $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^{d}$

Example: Circle (d = 1)

$$\phi_{top}(x, y) = x$$

 $\phi_{bottom}(x, y) = x$
 $\phi_{left}(x, y) = y$
 $\phi_{right}(x, y) = y$

First Order Geometry

- ► Tangent bundle *TM*: set of all tangent vectors
- Any element of a Riemannian manifold can be uniquely decomposed into two spaces

Example: Tangent Space to a Sphere

For any curve x(t) such that x(0) = x₀, we have x(t)^Tx(t) = 1, thus x(0) ∈ {ξ ∈ ℝⁿ : x₀^Tξ = 0}
For any ξ : x₀^Tξ, the curve x(t) = x_{0+tξ} ||x_{0+tξ|}| gives x(0) = ξ

$$\mathcal{T}_{x_0} \mathcal{S}^{n-1} = \{ \xi \in \mathbb{R}^n : x_0^\mathsf{T} \xi = \mathbf{0} \}$$

Line Search Methods

$$x_{k+1} = x_k + t_k d_k$$

- t_k: step size
- *d_k*: search direction

Retraction: optimization over matrix manifold

- Moving in the direction of a tangent vector
- Staying on the manifold

$$x_{k+1} = R_{x_k}(t_k d_k)$$

Concept of Retraction

Retraction on a manifoldSmooth mapping $R : \mathcal{TM} \to \mathcal{M}$:1. $R_x(0) = x$ 2. $\frac{d}{dt}R_x(tv)|_{t=0} = v$

- Map elements of \mathcal{TM} into points of \mathcal{M}
- Transform cost functions defined in a neighborhood of x ∈ M into cost functions defined on the vector space TM: f(R_x(·))

Example: Retraction on Sphere S^{n-1}

$$R_x(\xi) = \frac{x+\xi}{\|x+\xi\|}$$

Choices for global convergence

$$x_{k+1}=R_{x_k}(t_kd_k)$$

Search direction $\{d_k\}_k$: gradient-related

For any subsequence of $\{x_k\}_{k \in \mathcal{K} \subset \mathbb{N}} \to \text{non-critical point of } f, \{d_k\}_{k \in \mathcal{K}}$ is bounded and

$$\lim \sup_{k \to \infty k \in \mathcal{K}} \langle \operatorname{grad}(f(x_k)), d_k \rangle < 0.$$

Step size t_k : Armijo point $\beta^m \gamma$

Compute smallest integer $m \ge 0$ such that

$$f(\mathbf{x}_k) - f(\mathbf{R}_{\mathbf{x}_k}(\beta^m \gamma \mathbf{d}_k)) \geq -\mathbf{c}(\operatorname{grad}(f(\mathbf{x})), \beta^m \gamma \mathbf{d}_k).$$

scalars $\gamma > 0$, $\beta, c \in (0, 1)$

Input: Retraction *R* on \mathcal{M} ; scalars $\gamma > 0$, β , $c \in (0, 1)$

for $k = 0, 1, 2, \dots$ do

Pick d_k from the tangent space of x_k such that the sequence $\{d_k\}_k$ is gradient-related

Compute Armijo step size $t_k = \beta^m \gamma$ with smallest *m* such that

$$f(x) - f(R_x(\beta^m \gamma d)) \ge -c \langle \operatorname{grad}(f(x)), \beta^m \gamma d \rangle.$$

Update the iterate: $x_{k+1} = R_{x_k}(t_k d_k)$ end for

Output: Sequence of iterates $\{x_k\}$

Rayleigh Quotient Minimization on S^{n-1}

- tangent space: $\{\xi \in \mathbb{R}^n : x^\mathsf{T} \xi = \mathbf{0}\}$
- normal space: $\{\xi \in \mathbb{R}^n : \xi = \alpha x\}$
- projection onto tangent space: $P_x(\xi) = (I - xx^T)\xi$
- grad(f(x)) = 2($Ax xx^TAx$)
- retraction: $R_x(\xi) = \frac{x+\xi}{\|x+\xi\|}$

Geethu Joseph

Algorithm

- Input: scalars $\gamma > 0$, $\beta, c \in (0, 1)$ Initilize $x_0 \in S^{n-1}$
 - for *k* = 0, 1, 2, . . . do

$$d_k = 2(Ax_k - x_k x_k^\mathsf{T} A x_k)$$

Find smallest integer m > 0: $f(x) - f(R_x(\beta^m \gamma d_k)) \ge c \beta^m \gamma ||d_k||^2$

$$x_{k+1} = R_{x_k}(\beta^m \gamma d_k)$$

end for

Line Search Algorithm

Output: Sequence of iterates $\{x_k\}$

Let x^* be a subsequential limit of sequence $\{x_k\}$, then for real analytic function f,

- $x^* \rightarrow$ a critical point of *f*
- ▶ If \mathcal{M} is compact, $\|\operatorname{grad}(f(x_k))\| \to 0$
- If x* is not local minimum, it is unstable
- ▶ If *x*^{*} is an isolated local minimum, then it is asymptoically stable

- Problem: Optimization of a real-valued function on a matrix manifold
- Algorithm: Line search methods
- Advantage: Fast and strong convergence properties