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Basics of Gabor system

Definition

A translation operator Tk is a mapping from Cn → Cn such that

(Tkh)q = hk+q(mod n);∀h ∈ Cn.

Definition

A modulation operator Ml is a mapping from Cn → Cn such that

(Mlh)q = e
2πilq
n hq; ∀h ∈ Cn.

Definition

The composition of these two operators is called as a
time-frequency shift operator. It is a mapping from Cn → Cn such
that

Π(λ) = MloTk , where λ = (k, l).
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Basics of Gabor system

The system {Π(λ);λ ∈ Zn × Zn} of all time frequency shifts
forms a basis for Cn×n.

Definition

For a non zero vector g , the so called window, the set
{Π(λ)g ;λ ∈ Zn × Zn} is called a Gabor system.

The Gabor system is a tight frame in Cn, whenever g 6= 0.

Definition

The matrix Ψg ∈ Cn×n2
whose columns are the members of a

Gabor system is referred as a Gabor synthesis matrix.
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Basics of Compressed Sensing

A vector x ∈ RM is k−sparse if it has k nonzero coordinates.
That is, ‖x‖0 := |{i | xi 6= 0}| = k < M

One of the central problems in CS is that of reconstructing an
unknown sparse vector x ∈ RM from the linear measurements
y ′ = (〈x , ψ1〉, . . . , 〈x , ψm〉) ∈ Rm

One can recover sparse x from its linear measurements by
solving the following optimization problem:

P0 : min
x
‖x‖0 subject to Ψx = y (1)

D.Donoho et.al. posed an equivalent of this problem as

P1 : min
x
‖x‖1 subject to y = Ψx (2)
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Problem statement

The authors posed the following three equivalent problems

Determine the coefficient sequence of a vector

y =
∑

λ∈Zn×Zn

xλΠ(λ)g ,

that is known to have a sparse representation in the Gabor
system {Π(λ)g ;λ ∈ Zn × Zn} with window g 6= 0.

Establish the applicability of Ψg as measurement matrix for
compressed sensing, that is, they aim at efficiently recovering
an unknown signal x that is sparse in the Euclidean basis from
its measurements y = Ψgx
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Problem statement

Identify from a single input output pair (g , Γg) the coefficient
vector x of an operator

Γ =
∑

λ∈Zn×Zn

xλΠ(λ),

where Γ is assumed to have a sparse representation in the
system of time frequency shift matrices {Π(λ);λ ∈ Zn × Zn}.
That is, identify Γ ∈ Cn×n, or equivalently x , from its action
y = Γg on a single vector g .

Advantages with matrix Ψg

In the main results, the window vector g ∈ Cn is chosen at
random, which implies that the measurement matrix Ψg

depends only on n independent random variables as compared
to n × N independent random variables in the case of
Gaussian or Bernoulli measurement matrices.
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Advantages with matrix Ψg

The structure of Ψg allows for fast Fourier transform based
matrix vector multiplication algorithms. This leads to efficient
implementations of l1−minimization methods

The window vector g

The entries of Alltop window gA can be defined as follows:

gA
q =

1√
n

e
2πiq3

n , q = 0, 1, . . . , n − 1.

Through out the paper, the authors considered the randomly
generated window gR with entries

gR
q =

1√
n
εq, q = 0, 1, . . . , n − 1,

where the εq are independent and uniformly distributed on the
torus {z ∈ C, |z | = 1}.
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Existing results

In their earlier worka, the authors had given the theoretical
guarantees for basis pursuit algorithm when the sensing matrix
is Gabor synthesis

First, they have given the theoretical guarantees using
coherence based arguments

Since, coherence based arguments are worst case analysis,
they gone through the average case analysis and provided the
following recovery guarantees for BP algorithm

BP can recover the s−sparse vector with high probability
provided

s ≤ C
n

log(n)u
,

for some constant C , where u = 1 in the case of gA and
u = 2 in the case of gR

aPfander, G.E., Rauhut, H., Tanner, J.: Identification of matrices having a
sparse representation. IEEE Trans. Signal Process. 56(11), 5376-5388 (2008)
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Main results

In the above result, the average case analysis means, the
support set of x and and the signs of its nonzero coefficients
are chosen at random

In the present paper, the authors worked with the randomly
generated window gR and improved the above condition to
s ≤ C n

log(n) for deterministic x .

Theorem

Let n, be even and let Λ ⊂ Zn ×Zn be of cardinality |Λ| = s. Let x
with supp(x) = Λ be such that on Λ the random phases
(sgn(xλ))λ∈Λ are independent and uniformly distributed on the
torus {z ∈ C, |z | = 1}. Let σ > 8. Choose the window g = gR ,
with random entries independently and uniformly distributed on
the tours. Then with probability at most

2(n2 − s)exp

(
− n

8σs log(n)

)
+Csexp

(
− n

16es

)
+4n−(σ

4
−2)
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Main results

Basis pursuit algorithm fails to recover x from y = Ψgx . Here
support of x is deterministic and the phase of the coefficient vector
are random.

The restriction to n even was made for the sake of simple
exposition; a similar result holds also for n odd.

Theorem

Assume x is an arbitrary s−sparse coefficient vector. Choose the
random unimodular Gabor window g = gR as stated above.
Assume that

s ≤ C
n

log(nε )

for some constant C . Then with probability at least 1− ε BP
recovers x from y = Ψgx .
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Stirling number of the first kind

Definition

The associated Stirling number of the first kind, denoted by
d2(m, s) is the number of permutations of m elements which
involve exactly s disjoint cycles and where each cycle has at least 2
elements.

d2(0, 0) = 0, d2(m, 0) = 0, d2(m, s) = 0,m ≥ 1, s > m
2

d2(m + 1, s) = m[d2(m, s) + d2(m − 1, s − 1)], 1 ≤ s ≤ m
2

d2(m + 1, s) ≤ (2m)m−s .
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Well conditioned sub matrices of Gabor synthesis matrices

Many results on sparse recovery rely on the fact that small
column submatrices of measurement or synthesis matrices
such as Ψg are well-conditioned.

Theorem

Let ε, δ ∈ (0, 1) and Λ = s. Suppose that

s ≤ δ2n

4e(log s
ε ) + c

with c = log( e2

4(e−1) ). Then ‖IΛ −Ψ∗ΛΨΛ‖ ≤ δ with probability
atleat 1− ε; in other words the minimal and maximal eigenvalues
of Ψ∗ΛΨΛ satisfy 1− δ ≤ λmin ≤ λman ≤ 1 + δ with probability at
least 1− ε.
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Well conditioned sub matrices of Gabor synthesis matrices

Proof.

Set HΛ = Ψ∗ΛΨΛ − IΛ. We want to show P(‖IΛ −Ψ∗ΛΨΛ‖ > δ) ≤ ε.
P(‖IΛ −Ψ∗ΛΨΛ‖ > δ) = P(‖HΛ‖ > δ) = P(‖HΛ‖2m > δ2m)
≤ δ−2mE[‖HΛ‖2m] = δ−2mE[‖Hm

Λ ‖2] ≤ δ−2mE[‖Hm
Λ ‖2

F ]
=≤ δ−2mE[TrH2m

Λ ].

Lemma

If s = |Λ|,HΛ = Ψ∗ΛΨΛ − IΛ and m even then

E[TrHm
Λ ] ≤ s

(
s

n

)m
m
2∑

s=1

d2(m, s)

(
n

s

)s

.
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Let ψλ = Π(λ)g be the column of Ψ indexed by λ. By RΛx we
denote the restriction of a vector to the index set Λ.

Lemma

Suppose that y = Ψx for some x with supp(x) = Λ. If

|〈Ψ†Λψρ,RΛsgn(x)〉| < 1, ∀ρ /∈ Λ,

then x is the unique solution for the BP algorithm.

Proof of the main theorem 1

By using above lemma they calculated the failure probability of
recovery. That is, they find the
P(|〈Ψ†Λψρ,RΛsgn(x)〉| ≥ 1 for someρ /∈ Λ) by using the following
Bernstein type inequality for a sequence of independent random
variables εk having uniform distribution on the torus,

P
(∣∣∣∣∑

j

εjaj

∣∣∣∣≥ u‖a‖2

)
≤ e−κu

2

1− κ

for any κ ∈ (0, 1).
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Thank you
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