Sparsity in Time-Frequency Representations by Gotz E. Pfander and Holger Rauhut

R Ramu Naidu

IISc, SPC lab

April 21, 2017

- Basics of Gabor system
- Basics of Compressed Sensing
- Problem statement
- Main results

Basics of Gabor system

Definition

A translation operator \mathcal{T}_k is a mapping from $\mathbb{C}^n \to \mathbb{C}^n$ such that

$$(T_kh)_q = h_{k+q(mod n)}; \forall h \in \mathbb{C}^n.$$

Definition

A modulation operator M_l is a mapping from $\mathbb{C}^n \to \mathbb{C}^n$ such that

$$(M_l h)_q = e^{\frac{2\pi i l q}{n}} h_q; \forall h \in \mathbb{C}^n.$$

Definition

The composition of these two operators is called as a time-frequency shift operator. It is a mapping from $\mathbb{C}^n \to \mathbb{C}^n$ such that

$$\Pi(\lambda) = M_l o T_k, \text{ where } \lambda = (k, l).$$

The system {Π(λ); λ ∈ Z_n × Z_n} of all time frequency shifts forms a basis for C^{n×n}.

Definition

For a non zero vector g, the so called window, the set $\{\Pi(\lambda)g; \lambda \in \mathbb{Z}_n \times \mathbb{Z}_n\}$ is called a Gabor system.

• The Gabor system is a tight frame in \mathbb{C}^n , whenever $g \neq 0$.

Definition

The matrix $\Psi_g \in \mathbb{C}^{n \times n^2}$ whose columns are the members of a Gabor system is referred as a Gabor synthesis matrix.

Basics of Compressed Sensing

- A vector $x \in \mathbb{R}^M$ is k-sparse if it has k nonzero coordinates. That is, $||x||_0 := |\{i \mid x_i \neq 0\}| = k < M$
- One of the central problems in CS is that of reconstructing an unknown sparse vector x ∈ ℝ^M from the linear measurements y' = (⟨x, ψ₁⟩, ..., ⟨x, ψ_m⟩) ∈ ℝ^m
- One can recover sparse x from its linear measurements by solving the following optimization problem:

$$P_0: \min_{x} \|x\|_0 \text{ subject to } \Psi x = y \tag{1}$$

• D.Donoho et.al. posed an equivalent of this problem as

$$P_1: \min_{x} \|x\|_1 \text{ subject to } y = \Psi x$$
 (2)

- The authors posed the following three equivalent problems
- Determine the coefficient sequence of a vector

$$y = \sum_{\lambda \in \mathbb{Z}_n \times \mathbb{Z}_n} x_{\lambda} \Pi(\lambda) g,$$

that is known to have a sparse representation in the Gabor system $\{\Pi(\lambda)g; \lambda \in \mathbb{Z}_n \times \mathbb{Z}_n\}$ with window $g \neq 0$.

• Establish the applicability of Ψ_g as measurement matrix for compressed sensing, that is, they aim at efficiently recovering an unknown signal x that is sparse in the Euclidean basis from its measurements $y = \Psi_g x$

Problem statement

 Identify from a single input output pair (g, Γg) the coefficient vector x of an operator

$$\Gamma = \sum_{\lambda \in \mathbb{Z}_n \times \mathbb{Z}_n} x_{\lambda} \Pi(\lambda),$$

where Γ is assumed to have a sparse representation in the system of time frequency shift matrices $\{\Pi(\lambda); \lambda \in \mathbb{Z}_n \times \mathbb{Z}_n\}$. That is, identify $\Gamma \in \mathbb{C}^{n \times n}$, or equivalently x, from its action $y = \Gamma g$ on a single vector g.

Advantages with matrix Ψ_g

• In the main results, the window vector $g \in \mathbb{C}^n$ is chosen at random, which implies that the measurement matrix Ψ_g depends only on n independent random variables as compared to $n \times N$ independent random variables in the case of Gaussian or Bernoulli measurement matrices.

Advantages with matrix Ψ_g

• The structure of Ψ_g allows for fast Fourier transform based matrix vector multiplication algorithms. This leads to efficient implementations of l_1 -minimization methods

The window vector g

• The entries of Alltop window g^A can be defined as follows:

$$g_q^A = \frac{1}{\sqrt{n}} e^{\frac{2\pi i q^3}{n}}, q = 0, 1, \dots, n-1.$$

• Through out the paper, the authors considered the randomly generated window g^R with entries

$$g_q^R = \frac{1}{\sqrt{n}} \epsilon_q, q = 0, 1, \dots, n-1,$$

where the ϵ_q are independent and uniformly distributed on the torus $\{z\in\mathbb{C},|z|=1\}.$

Existing results

- In their earlier work^a, the authors had given the theoretical guarantees for basis pursuit algorithm when the sensing matrix is Gabor synthesis
- First, they have given the theoretical guarantees using coherence based arguments
- Since, coherence based arguments are worst case analysis, they gone through the average case analysis and provided the following recovery guarantees for BP algorithm
- BP can recover the s-sparse vector with high probability provided

$$s \leq C \frac{n}{\log(n)^u},$$

for some constant C, where u = 1 in the case of g^A and u = 2 in the case of g^R

^aPfander, G.E., Rauhut, H., Tanner, J.: Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376-5388 (2008)

Main results

- In the above result, the average case analysis means, the support set of x and and the signs of its nonzero coefficients are chosen at random
- In the present paper, the authors worked with the randomly generated window g^R and improved the above condition to $s \le C \frac{n}{\log(n)}$ for deterministic x.

Theorem

Let n, be even and let $\Lambda \subset \mathbb{Z}_n \times \mathbb{Z}_n$ be of cardinality $|\Lambda| = s$. Let x with $supp(x) = \Lambda$ be such that on Λ the random phases $(sgn(x_{\lambda}))_{\lambda \in \Lambda}$ are independent and uniformly distributed on the torus $\{z \in \mathbb{C}, |z| = 1\}$. Let $\sigma > 8$. Choose the window $g = g^R$, with random entries independently and uniformly distributed on the tours. Then with probability at most

$$2(n^2 - s)exp\left(-\frac{n}{8\sigma s \log(n)}\right) + Csexp\left(-\frac{n}{16es}\right) + 4n^{-(\frac{\sigma}{4}-2)}$$

Basis pursuit algorithm fails to recover x from $y = \Psi_g x$. Here support of x is deterministic and the phase of the coefficient vector are random.

• The restriction to *n* even was made for the sake of simple exposition; a similar result holds also for *n* odd.

Theorem

Assume x is an arbitrary s-sparse coefficient vector. Choose the random unimodular Gabor window $g = g^R$ as stated above. Assume that

$$s \leq C \frac{n}{\log(rac{n}{\epsilon})}$$

for some constant C. Then with probability at least $1 - \epsilon$ BP recovers x from $y = \Psi_g x$.

Definition

The associated Stirling number of the first kind, denoted by $d_2(m, s)$ is the number of permutations of *m* elements which involve exactly *s* disjoint cycles and where each cycle has at least 2 elements.

•
$$d_2(0,0) = 0, d_2(m,0) = 0, d_2(m,s) = 0, m \ge 1, s > \frac{m}{2}$$

- $d_2(m+1,s) = m[d_2(m,s) + d_2(m-1,s-1)], 1 \le s \le \frac{m}{2}$
- $d_2(m+1,s) \leq (2m)^{m-s}$.

Well conditioned sub matrices of Gabor synthesis matrices

 Many results on sparse recovery rely on the fact that small column submatrices of measurement or synthesis matrices such as Ψ_g are well-conditioned.

Theorem

Let $\epsilon, \delta \in (0, 1)$ and $\Lambda = s$. Suppose that

$$s \leq rac{\delta^2 n}{4e(\log rac{s}{\epsilon}) + c}$$

with $c = log(\frac{e^2}{4(e-1)})$. Then $\|I_{\Lambda} - \Psi_{\Lambda}^* \Psi_{\Lambda}\| \leq \delta$ with probability atleat $1 - \epsilon$; in other words the minimal and maximal eigenvalues of $\Psi_{\Lambda}^* \Psi_{\Lambda}$ satisfy $1 - \delta \leq \lambda_{min} \leq \lambda_{man} \leq 1 + \delta$ with probability at least $1 - \epsilon$.

Proof.
Set
$$H_{\Lambda} = \Psi_{\Lambda}^{*}\Psi_{\Lambda} - I_{\Lambda}$$
. We want to show $\mathbb{P}(||I_{\Lambda} - \Psi_{\Lambda}^{*}\Psi_{\Lambda}|| > \delta) \le \epsilon$.
 $\mathbb{P}(||I_{\Lambda} - \Psi_{\Lambda}^{*}\Psi_{\Lambda}|| > \delta) = \mathbb{P}(||H_{\Lambda}|| > \delta) = \mathbb{P}(||H_{\Lambda}||^{2m} > \delta^{2m})$
 $\le \delta^{-2m}\mathbb{E}[||H_{\Lambda}||^{2m}] = \delta^{-2m}\mathbb{E}[||H_{\Lambda}^{m}||^{2}] \le \delta^{-2m}\mathbb{E}[||H_{\Lambda}^{m}||^{2}_{F}]$
 $= \le \delta^{-2m}\mathbb{E}[TrH_{\Lambda}^{2m}].$

Let $\psi_{\lambda} = \Pi(\lambda)g$ be the column of Ψ indexed by λ . By $R_{\Lambda}x$ we denote the restriction of a vector to the index set Λ .

Lemma

Suppose that
$$y = \Psi x$$
 for some x with $supp(x) = \Lambda$. If

$$|\langle \Psi^{\dagger}_{\Lambda}\psi_{\rho}, R_{\Lambda}sgn(x)\rangle| < 1, \forall \rho \notin \Lambda,$$

then x is the unique solution for the BP algorithm.

Proof of the main theorem 1

By using above lemma they calculated the failure probability of recovery. That is, they find the $\mathbb{P}(|\langle \Psi_{\Lambda}^{\dagger}\psi_{\rho}, R_{\Lambda}sgn(x)\rangle| \geq 1 \text{ for some}\rho \notin \Lambda)$ by using the following Bernstein type inequality for a sequence of independent random variables ϵ_k having uniform distribution on the torus,

$$\mathbb{P}\left(\left|\sum_{j}\epsilon_{j}a_{j}\right|\geq u\|a\|_{2}\right)\leq\frac{e^{-\kappa u^{2}}}{1-\kappa}$$

Thank you