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Basics of Gabor system

Definition
A translation operator Ty is a mapping from C" — C” such that

(Tkh)q = hk+q(mod n);Vh e C".

Definition

|

A modulation operator M, is a mapping from C" — C” such that

2

(Mih)g = e e hq;Vh e C".

|

Definition

The composition of these two operators is called as a
time-frequency shift operator. It is a mapping from C" — C” such
that

M(A) = MjoTy, where A = (k, 1).
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Basics of Gabor system

@ The system {M1(A\); A € Z,, x Z,} of all time frequency shifts
forms a basis for C"*".

For a non zero vector g, the so called window, the set
{N(N\)g; X\ € Z, x Zp} is called a Gabor system.

A

@ The Gabor system is a tight frame in C", whenever g # 0.

Definition

|

The matrix W, € C™™ whose columns are the members of a
Gabor system is referred as a Gabor synthesis matrix.
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Basics of Compressed Sensing

o A vector x € RM is k—sparse if it has k nonzero coordinates.
Thatis, ||x|lo:={i | xi#0} =k < M

@ One of the central problems in CS is that of reconstructing an
unknown sparse vector x € RM from the linear measurements

y'=((¢1), 5 (x¥m)) €RT

@ One can recover sparse x from its linear measurements by
solving the following optimization problem:

Po : min ||x||o subject to Wx =y (1)
X

@ D.Donoho et.al. posed an equivalent of this problem as

P1 : min||x||1 subject to y = Wx (2)
X
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Problem statement

@ The authors posed the following three equivalent problems

@ Determine the coefficient sequence of a vector

y= Y. xl\g

AEZn XZin

that is known to have a sparse representation in the Gabor
system {[1(\)g; A € Z, X Zp} with window g # 0.

@ Establish the applicability of W, as measurement matrix for
compressed sensing, that is, they aim at efficiently recovering

an unknown signal x that is sparse in the Euclidean basis from
its measurements y = W, x
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Problem statement

@ Identify from a single input output pair (g, g) the coefficient
vector x of an operator

Fr= > xn),

AEZLnXZin

where [ is assumed to have a sparse representation in the
system of time frequency shift matrices {[1(A\); A € Z, x Z,}.
That is, identify [ € C"™*", or equivalently x, from its action
y = I'g on a single vector g.

Advantages with matrix W,

@ In the main results, the window vector g € C” is chosen at
random, which implies that the measurement matrix W,
depends only on n independent random variables as compared
to n x N independent random variables in the case of
Gaussian or Bernoulli measurement matrices.
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Advantages with matrix W,

@ The structure of W, allows for fast Fourier transform based
matrix vector multiplication algorithms. This leads to efficient
implementations of /; —minimization methods

The window vector g

| A\

@ The entries of Alltop window g”* can be defined as follows:

1 27riq3
A £nlq
gq = 76 n 7q:O,]_,...,f'l—]..
n
@ Through out the paper, the authors considered the randomly
generated window gf with entries

1
gq’,?:—eq,q:O,l,...,n—l7

Jn

where the €4 are independent and uniformly distributed on the
torus {z € C,|z| = 1}.

A
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Existing results

@ In their earlier work?, the authors had given the theoretical
guarantees for basis pursuit algorithm when the sensing matrix
is Gabor synthesis

o First, they have given the theoretical guarantees using
coherence based arguments

@ Since, coherence based arguments are worst case analysis,
they gone through the average case analysis and provided the
following recovery guarantees for BP algorithm

@ BP can recover the s—sparse vector with high probability

provided
n

log(n)"’

for some constant C, where u =1 in the case of gA and
u =2 in the case of gR

?Pfander, G.E., Rauhut, H., Tanner, J.: Identification of matrices having a
sparse representation. |IEEE Trans. Signal Process. 56(11), 5376-5388 (2008)
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Main results

@ In the above result, the average case analysis means, the
support set of x and and the signs of its nonzero coefficients
are chosen at random

@ In the present paper, the authors worked with the randomly
generated window g and improved the above condition to
s < C% for deterministic x.

Theorem

Let n, be even and let N C Z, x Zp, be of cardinality |\| =s. Let x
with supp(x) = A be such that on N\ the random phases
(sgn(xx))ren are independent and uniformly distributed on the
torus {z € C,|z| = 1}. Let 0 > 8. Choose the window g = g~,
with random entries independently and uniformly distributed on
the tours. Then with probability at most

2 _ " L ~(5-2)
2(n s)exp< 805|og(n))+cseXp< 16es)+4n 4
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Main results

Basis pursuit algorithm fails to recover x from y = Wgx. Here
support of x is deterministic and the phase of the coefficient vector
are random.

@ The restriction to n even was made for the sake of simple
exposition; a similar result holds also for n odd.

Theorem

Assume x is an arbitrary s—sparse coefficient vector. Choose the
random unimodular Gabor window g = g as stated above.

Assume that "

<
5= Cloe@

for some constant C. Then with probability at least 1 — ¢ BP
recovers x from y = Wgx.
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Stirling number of the first kind

Definition

The associated Stirling number of the first kind, denoted by

da(m, s) is the number of permutations of m elements which
involve exactly s disjoint cycles and where each cycle has at least 2
elements.

4

e d>(0,0) = 0,d2(m,0) =0,d2(m,s) =0,m>1,5s> 7
o do(m+1,5) = m[da(m,s) +do(m—1,5s-1)],1<s< 7
o db(m+1,s) < (2m)™~=.
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Well conditioned sub matrices of Gabor synthesis matrices

@ Many results on sparse recovery rely on the fact that small
column submatrices of measurement or synthesis matrices
such as W, are well-conditioned.

Theorem
Let €,0 € (0,1) and A = s. Suppose that

- 6°n
s e —
~ 4de(log ) +c

with ¢ = log(z‘(:%il)). Then ||In — WAWA|| < & with probability
atleat 1 — €; in other words the minimal and maximal eigenvalues
of AW satisfy 1 — 0 < Apmin < Aman < 1+ 0 with probability at
least 1 — €.
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Well conditioned sub matrices of Gabor synthesis matrices

Proof.

Set Hy = WAWA — Ia. We want to show P(||/y — VWAl > 0) <.
P(||In — WAWAIl > 6) = P(|[Hal| > 8) = P(||Hal[*™ > 6°™)

< 672ME[|[HAll?™ = 02ME[|[HY 7] < 07 2"E[|H 7]

—< §2ME[TrH2™). m

Lemma

|

If s =|A|, H, = WAWA — In and m even then

E[TrH] < s<%> msz: ) (g)
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Let ¢y = lN(A\)g be the column of W indexed by A. By Ryx we
denote the restriction of a vector to the index set A.

Lemma

Suppose that y = Wx for some x with supp(x) = N. If

(Wb, Rasgn(x))| < 1,¥p ¢ A,

then x is the unique solution for the BP algorithm.

|

Proof of the main theorem 1

By using above lemma they calculated the failure probability of
recovery. That is, they find the

IP(|<W;[\1/JP, Rasgn(x))| > 1 for somep ¢ A) by using the following
Bernstein type inequality for a sequence of independent random
variables e, having uniform distribution on the torus,

IP’< > 43

—Hu2

e
> ullle) < 5

— K

J
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Thank you
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