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Construction of UNTFs via MM methods

Basics of Frame Theory

Definition

A family of vectors Ψ = {ψi}Mi=1 in Cm is called a frame for Cm, if
there exist constants 0 < A ≤ B <∞ such that

A ‖x‖2 ≤
M∑
i=1

|〈x , ψi 〉|2 ≤ B ‖x‖2 , ∀x ∈ Cm, (1)

where A,B are called the lower and upper frame bounds
respectively.

The matrix Ψm×M = [ψ1, . . . , ψM ] with ψi as columns, is
known as the frame synthesis operator

The optimal frame bounds A and B are the least and greatest
eigenvalues of ΨΨ∗
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Construction of UNTFs via MM methods

Basics of Frame Theory

If A = B, then {ψi}Mi=1 is an A−tight frame (TF)

If A = B = 1, then it is a Parseval frame

The tightness condition of a frame Ψ implies that the rows of
Ψ are orthogonal and have equal norm

√
A

If there exist a constant d such that | 〈ψi , ψj〉 | = d , for
1 ≤ i < j ≤ M, then it is an equiangular frame

If there exits a constant c such that ‖ψi‖ = c for all
i = 1, 2, . . . ,M then {ψi}Mi=1 is an equal norm frame

If c = 1 then it is a unit-norm frame

If a frame is unitnorm TF and equiangular, then it is called
equiangular tight frame(ETF)

{〈x , ψi 〉}Mi=1 is called the frame coefficients of x ∈ Cm with
respect to frame {ψi}Mi=1
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Construction of UNTFs via MM methods

Basics of Frame Theory

Tight frames provide following Parseval-like decompositions:

x =
1

A

M∑
i=1

〈x , ψi 〉ψi , ∀x ∈ Cm. (2)

Any unitnorm A−tight frame satisfies the following condition:

M =
M∑
i=1

‖ψi‖2
2 = Trace(Ψ∗Ψ) = Trace(ΨΨ∗) = Am. (3)

From the above equation, one can conclude that for an
unitnorm A−tight frame, the tightness parameter A = M

m

Unitnorm tight frames, have been used in the construction of
signature sequences in CDMA systems
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Construction of UNTFs via MM methods

Basics of Frame Theory

A tight frame is said to be Unimodular tight frame (UTF) if
|ψij | = 1 for all i = 1, . . . ,m and j = 1, . . . ,M

If Ψm×M is a unimodular tight frame then 1√
m

Ψ is a unitnorm

tight frame

Definition

The mutual-coherence µ(Ψ) of a given frame Ψ is the largest
absolute inner-product between different normalized frame columns
of Ψ, that is,

µ(Ψ) = max
1≤ i ,j≤ M, i 6=j

| ψT
i ψj |

‖ψi‖2‖ψj‖2
. (4)

We define frames that have a low mutual coherence value to
be incoherent
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Construction of UNTFs via MM methods

Basics of Frame Theory

The Welch bound for any arbitrary frame is as follows:

µ(Ψ) ≥

√
M −m

m(M − 1)
(5)

Equiangular tight frames are the unit norm ensembles that
achieve equality in the above Welch bound

The construction of unit norm tight frames and equiangular
tight frames has been proven notoriously difficult

In the construction of unit norm tight frames, the frame
potential,

FP(Ψ) =
M∑
i=1

M∑
j=1

| 〈ψi , ψj〉 |2, (6)

is a useful tool
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Construction of UNTFs via MM methods

Basics of Frame Theory

In particular, if F is the family of frames with lower frame
bound A then the A-tight frames are the minimizers of the
frame potential over F
That is, UNTFs are exactly the minimizers of a frame
potential

Any UNTF with M = m + 1 vectors is an equiangular tight
frame

In this paper, we construct incoherent unimodular tight
frames using majorization-minimization methods

Based on recent theoretical results, we employ these frames in
compressed sensing to improve reconstruction of sparse signals
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Construction of UNTFs via MM methods

Basics of Compressed Sensing

A vector x ∈ RM is k−sparse if it has k nonzero coordinates.
That is, ‖x‖0 := |{i | xi 6= 0}| = k < M

One of the central problems in CS is that of reconstructing an
unknown sparse vector x ∈ RM from the linear measurements
y ′ = (〈x , ψ1〉, . . . , 〈x , ψm〉) ∈ Rm

One can recover sparse x from its linear measurements by
solving the following optimization problem:

P0 : min
x
‖x‖0 subject to Ψx = y (7)

This l0−minimization problem is computationally not
tractablea in general

aSimon Foucart and Holger Rauhut, “A Mathematical Introduction to
Compressive Sensing,” Birkhauser, Baseln, 2013.
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Construction of UNTFs via MM methods

On the solvability of P0 problem

There have been attempts to repose or solve P0 problem via
greedy and convex relaxation methods

D.Donoho et.al. posed an equivalent of this problem as

P1 : min
x
‖x‖1 subject to b = Ψx (8)

The general question of CS is: “when do both problems (7)
and (8) admit same solution ?”

Theorem

An arbitrary k−sparse signal x can be uniquely recovered from
y = Ψx as a solution to P1 problem provided

k <
1

2

(
1 +

1

µΨ

)
. (9)
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Construction of UNTFs via MM methods

The Majorization-Minimization (MM) method

Suppose we want to minimize f (x) over X ⊂ Cm

The MM approach optimizes a sequence of approximate
objective functions g(x , x (k)) that majorize f (x)

The function g(x , x (k)) is said be majorized function of f (x)
at the point x (k) if

f (x) ≤ g(x , x (k)),∀x ∈ X , and f (x (k)) = g(x (k), x (k)) (10)

The MM algorithm corresponding to this majorization function
g , starts with a random feasible point x0 and produces a
sequence {x (k)} according to the following update rule

x (k+1) = arg minx∈X g(x , x (k)) (11)

The above iterative scheme decreases the value of f
monotonically in each iteration
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

By solving the following optimization problem one can
generate UTFs,

arg min
{ψl}Ml=1

M∑
i=1

M∑
j=1

| 〈ψi , ψj〉 |2 s.t |ψij | = 1;∀i and j . (12)

Let’s assume Ψ = [ψT
1 , . . . , ψ

T
M ]T , then we have

ψl = SlΨ, (13)

where Sl is an m ×mM block selection matrix defined as

Sl = [0m×(l−1)m, Im, 0m×(M−l)m]

We define the inner-product between any two vectors of Cm

as 〈ψi , ψj〉 = ψH
j ψi
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

From (13), we have,

〈ψi , ψj〉 = ΨHSH
j SiΨ, (14)

Which implies,

| 〈ψi , ψj〉 |2 = |ΨHSH
j SiΨ|2

= |tr(ΨHSH
j SiΨ)|2

= |vec(ΨΨH)Hvec(SH
j Si )|2, (15)
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

By using (15), the minimization problem in (12) can be
written as

arg min
Ψ∈CmM

vec(ΨΨH)HLvec(ΨΨH) (16)

subject to |ψi | = 1;∀i = 1, . . . ,mM,

where

L =
M∑
i=1

M∑
j=1

vec(SH
j Si )vec(SH

j Si )
H . (17)

Lemma

Let P be an m ×m Hermitian matrix and Q be another m ×m
Hermitian matrix such that Q � P. Then for any point X0 ∈ Cm ,
the quadratic function XHPX is majorized by
XHQX + 2Re(XH(P − Q)X0) + XH

0 (Q − P)X0 at x0. 14 / 25



Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

Lemma

Let Pm×m be a real symmetric non-negative matrix. Then the
problem

min
b

bT1m subject to Diag(b) � P

admits the optimal solution, which is b∗ = P1m, where Diag(.) is a
diagonal matrix formed with the vector (.), as its principal diagonal.

It is easy to see that L in equation (17) is a nonnegative real
symmetric matrix and by using above lemma it can be shown
that L � Diag(b), where b = L1m2M2 .
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

Therefore for a given Ψ(l) at iteration l by using first lemma
the majorized function for the objective function in
equation (16) at Ψ(l) as follows:

g1(Ψ,Ψ(l))

= vec(ΨΨH)HDiag(b)vec(ΨΨH)

+2Re(vec(ΨΨH)H(L− Diag(b))vec(Ψ(l)Ψ(l)H ))

+vec(Ψ(l)Ψ(l)H )H(Diag(b)− L)vec(Ψ(l)Ψ(l)H )(18)

After ignoring the constant terms the majorized problem of
equation (16) is given by

min
Ψ

Re(vec(ΨΨH)H(L− Diag(b))vec(Ψ(l)Ψ(l)H )) (19)

subject to |ψi | = 1;∀i = 1, . . . ,mM.
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

After some simplifications the minimization problem in
equation (19) cab be written as follows:

min
Ψ

ΨH

(
S − (R � (Ψ(l)Ψ(l)H ))

)
Ψ (20)

subject to |ψi | = 1;∀i = 1, . . . ,mM,

where

R = 1M×M ⊗mIm and S =
M∑
i=1

M∑
j=1

〈
ψ

(l)
j , ψ

(l)
i

〉
(SH

j Si ) (21)

We majorize the objective function at Ψ(l) to further simplify
the problem at every iteration
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

To construct a majorization function for the objective function
in (20), we need to find a matrix Q such that

(S − (R � (Ψ(l)Ψ(l)H ))) � Q and the obvious choice may be

Q = λmax(S − (R � (Ψ(l)Ψ(l)H )))I . We have the following:

λmax(S − (R � (Ψ(l)Ψ(l)H ))) ≤ λmax(S)− λmin(R),

≤ ‖S‖∞ − λmin(R) (22)

Since M ≥ m and the eigenvalues of A⊗ B are the product of
eigenvalues of A and B, we have λmin(R) = 0. Therefore,

λmax(S − (R � (Ψ(l)Ψ(l)H ))) ≤ ‖S‖∞ (23)
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

Now by choosing Q = ‖S‖∞I in first lemma, the objective
function in equation (20) is majorized by

g2(Ψ,Ψ(l))

= ‖S‖∞ΨHΨ

+2Re

(
ΨH

(
S − (R � (Ψ(l)Ψ(l)H ))− ‖S‖∞I

)
Ψ(l)

)
+Ψ(l)H

(
‖S‖∞I − S + (R � (Ψ(l)Ψ(l)H ))

)
Ψ(l). (24)

After ignoring the constant terms, the majorized problem of
(20) is given by
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Construction of UTFs via MM methods

Construction of Unimodular Tight Frames Via MM Methods

min
Ψ

Re(ΨHΦ) (25)

subject to |ψi | = 1;∀i = 1, . . . ,mM,

where Φ = (S − (R � (Ψ(l)Ψ(l)H )))Ψ(l) − ‖S‖∞Ψ(l)

It is clear that the minimization problem in equation (25) is
separable in the elements of Ψ and the solution is as follows:

ψi = e jarg(−φi );∀i = 1, . . . ,mM (26)
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Construction of UTFs via MM methods

Simulation results

iterations
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Figure : Comparison of the reconstruction performances of the
synthesized matrices and complex Gaussian random matrices when the
matrices are of size (a) 16× 64 (top plot). These plot indicate that the
matrices constructed from our approach show superior performance for
some sparsity levels, while for other levels both matrices result in the
same performance. The x and y axes in both plots refer respectively to
the sparsity level and the success rate (in % terms).
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