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Figure: GNSS Receiver System

GNSS-Global Navigation Satellite System
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User Position Determination - Geometric Concept
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A two-dimensional position determination requires at only three
visible satellites.

A three-dimensional position determination requires at least four
visible satellites.

If the altitude (height) is known, then a two-dimensional position
determination can be achieved using at least three visible satellites.
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How to find the pseudo range from satellite .. ??

Concept of TOA: Time of Arrival

The pseudo range, ρ = time of travel × speed of light,
speed of light, c = 299,792,458 m/s.
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Satellite Signal

Each signal consists of three components:

RF carrier frequency.

Pseudorandom noise (PRN) code that serves as a ranging code.

Navigation message that contains the ephemeris and the almanac
data.
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Solve four set of equations to obtain the user position (UX ,UY ,UZ )
and Clock Bias (CB).

(X1 − UX )2 + (Y1 − UY )2 + (Z1 − Uz)2 = (ρ1 − CB)2

(X2 − UX )2 + (Y2 − UY )2 + (Z2 − Uz)2 = (ρ2 − CB)2

(X3 − UX )2 + (Y3 − UY )2 + (Z3 − Uz)2 = (ρ3 − CB)2

(X4 − UX )2 + (Y4 − UY )2 + (Z4 − Uz)2 = (ρ4 − CB)2

where (Xk ,Yk ,Zk) and ρk is the position and pseuso range of kth

satellite.
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How to analyse the received signals from multiple
satellites??
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Received Signal

r [n]

=
K∑

i=1

√
Pici [nTs −

τi

]bi [nTs −

τi

]× e j(2π

fdi

nTs+

θi

) + w [n]

r [n] - output of A/D

Pi - received signal power

ci [nTs − τi ] - PRN code

bi [nTs − τi ] - data bit

τi - code delay

frequency and phase uncertainity

fdi - frequency offset
θi - carrier phase

K - # transmitters

w [n] ∼ N (0, σ2)

Ts - Sampling time
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Signal Acquisition

e−j2πf̂dknTs

r(n)

ck(nTs − τ̂k)

∑Ncoh−1
n=0 (·)

y(l) ∑L−1
l=0 (·)2 T ≥ γ

H0

H1

GPS signal acquisition starts with a 2D search process. The goal of the
acquisition is to find the visible satellites.
Output of acquisition is

C/A Code delay, τ and

The Doppler shift, fd .
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GNSS Signal Structure

Galileo /GPS Signal Characteristics:

GNSS Signal Characteristics
Standard GPS L1 Galileo E1

Modulation BPSK BOC(1,1)
Data rate (bps) 50 250
Chip rate (Mcps) 1.023 1.023

Table: GNSS Signal Characteristics

The GPS coarse/acquisition (C/A) code is a Gold code with a
sequence length of 1,023 bits (chips).

Since the chipping rate of the C/A code is 1.023 MHz, the repetition
period of the PRN sequence is 1,023

1.023×106Hz
or 1 ms.

Each data bit has exactly 20 C/A code periods.
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Converting into Sparse signal recovery problem

Received signal vector

r =
[
r(0) r(1) . . . r(N − 1)

]T

r - N × 1
Code chip matrix

C =




c(1) c(2) . . . c(N)
c(2) c(3) . . . c(N + 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c(N) c(N + 1) . . . c(2N)




C - N × N

1. One Satellite, No doppler

x = C× rT =
[
0 0 . . . 0 1 0

]T

- one sparse vector.
x - N × 1
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Converting into Sparse signal recovery problem

2. One Satellite, P - Doppler frequency bins

C̃ =
[
C ejf1C ejf2C . . . ejfPC

]T

C̃ - NP × N

x = C̃× rT =
[
0 0 . . . 0 1 0

]T

- one sparse vector.
x - NP × 1

3. K Satellites, P- Doppler frequency bins

D =
[
C̃1 C̃2 C̃3 . . . C̃K

]T

C̃ - NP × N

x = D× rT =
[
0 1 0 . . . 0 1 0 1 0 1 0 0

]T

- K sparse vector.
x - NPK × 1
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Converting into Sparse signal recovery problem

Y = Φ×D× r︸ ︷︷ ︸
x

Y = Φ× x

Φ - M × NPK and x - NPK × 1.

x - is a sparse signal, whose sparsity is given by # visible satellites.

Φ - Dictionary matrix (Assume as Filter bank with corresponding
coefficients).

Y - Measurement matrix at the output of coherent integration stage.
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Converting into Sparse signal recovery problem

Coherent

Yl

Xl

A

∗

Nx1

MxNMx1

=
Stage

Outputs
Integration

Modeling Coherent integration output in CS form where.

M − # filters used at the receiver and

N − # satellites × # time bins × # frequency bins.
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X1

. . .

XLX2

∗

A
MxN

=

Y1 Y2

. . .

YL

For L measurements, each Xl has common support, where l ∈ [L].
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Non-Coherent Integration

Y1

=

Z

+

Mx1

Y1 ∑L−1
l=0 (·)2

. . . YL Z

Non-Coherent Integration

2

Y2

+

2

. . .

YL

2

+

Final measurement vector Z is obtained by noncoherent accumulation
over L instants.
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CS Processing

Processing
Block

Support

Measurement
V ectorReceived

Signal

}
Satellites Present

Compressive
Sensing

Recovery

...

K Mohanbabu (IISc) Sparse Signal Recovery Based GNSS Signal Acquisition 18th Feb, 2017 23 / 36



Problem Statement

Yl = AXl + wl

Z =
L∑

l=1

Y .2
l

where Yl ∈ RN , Z ∈ RM , A ∈ RM×N , Xl ∈ RN , l ∈ (1, 2, ..., L) and each
Xl is sparse and have common support.

Problem of signal detection in GNSS acquistion is equivalent to
recovering the support of Xl from Z and A.

Problem: Recover supp(Xl ) from Z and A.
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Prosposed Solution

Problem is solved by converting the power measurements into Rank-one
measurements.
We have, each measurement,

zi =
L∑

l=1

(aiX l)
2

where ai
T is i th row in A, i ∈ [M] and ai

T is N × 1.
Consider

zi =
1

L

L∑

l=1

(aT
i X l)

2

=
L∑

l=1

(aT
i X l)× (aT

i X l)
T
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= aT
i

(
1

L

L∑

l=1

X lXl
T

)
(aT

i )
T

≈ aT
i X 0(aT

i )
T

where X 0 = E[X lXl
T ] corresponds to the covariance matrix of the data

when L is sufficiently large.

The measurements zi , i ∈ [M] are quadratic in the sensing vector ai ,
but linear in X 0.
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Assumption: Nonzero entries in each Xl is uncorrelated.

Z ≈ (A� A)γ

= Ãγ

where Ã = A� A, γ = diag(X0) ∈ RN and � - Hadamard product.

Now the goal is to recover γ using Z and A, which is similar to well
understood signal recovery problem, y = Φx.
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Recovery Methods

Sparse bayesian learning (SBL) algorithm.

SBL using approximate message passing (AMP-SBL).
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Simulation Setup

Numerical experiments are run with the following setup

M = 64, N = 128, L = 1000 (noncoherent measurements).

Elements of A are generated according to N (0, 1
M ).

Each Xl is sparse and nonzero entries are generated according to
N (0, 1).
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Simulations

AMP-SBL and SBL perform better for support recovery than other
algorithms.
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Figure: Success recovery using different algorithms at 25dB SNR
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Relation B/W M, N and K
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Figure: Success recovery with different M’s for fixed sparsity and N.

M =
√

2K log(N/K )
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Simulations

Performance of support recovery improves with increasing
noncoherent measurements.
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Figure: Success recovery v/s Sparsity with different noncoherent measurements
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Summary

Converted GNSS signl detection problem into support recovery of
sparse siganl.

Proposed a CS based solution for support recovery.

Simulation results shows that support recovery improves with #
non-coherent measurements.
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Future Work

To design algorithms to get the smallest posssible M and L.

To exploit the structure in the sparse signal vector x.
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Navigation message:

The navigation message transmitted on the L1 carrier frequency is 25
consecutive 1,500-bit-long frames. Each frame is made up of five
subframes. Figure 1.1 shows the structure of a subframe. Each subframe
has a duration of 6 seconds, and each consists of 10 words. Each word
consists of 30 bits. Subframes 1 to 3 contain the ephemeris and repeat in
every frame (i.e., they repeat every 30 sec.), while subframes 4 and 5
contain the almanac and repeat every 25 frames (i.e., they repeat every
12.5 minutes). Each word, in each subframe, contains a 6-bit parity.
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