Sparse Signal Recovery(SSR) Based Algorithms for Data Decoding in Media Based Modulation

Ashok Bandi

SPC Lab, IISc

Sept. 10, 2016

Agenda

- What is MBM
- Sparsity in MBM
- Structure of sparsity in GSM-MBM
- SSR algorithm for MBM
- Simulation results
- Future work

MBM: Media Based Modulation

- Varying the end to end channel based on the input is called Media Based Modulation.
- Carrier is modulated after leaving the transmitter by changing RF properties of the medium.
- All others traditional modulations are referred as Source Based Modulations(SBM).
- Small perturbation near the tx in a rich scattering environment results an independent end-to-end channel. RF mirrors are used for creating perturbations.

- If r_{s} bits are used for SBM and r_{m} bit for MBM, total $r_{s}+r_{m}$ can be transmitted by combining SBM and MBM, and receiver will receive one of the points from constellation of $2^{\left(r_{s}+r_{m}\right)}$ points.

Advantages of MBM

- Increasing the spectral efficiency without increasing energy unlike SBM, where increasing r_{s} results exponential increase in energy.
- Deep fades do not have persisting effect because of Constellation diversity. As constellation size increases, this converts static multi-path fading channel into non-fading AWGN.
- In a $1 \times D$ SIMO-MBM system received vector spans in D receive dimension unlike SIMO-SBM which spans in single complex dimension, which is equivalent to SIMO-SBM with D times bandwidth.
- Possibility of choosing subset of channel similar to multi user diversity gain in scheduling.

Disadvantages of MBM

- Random arrangements of constellation points and all points are used with equal probability. While in SBM constellation can be used with non uniform probability to realize shaping gain.
- MBM is Linear Time variant, can trouble the traditional channel equalization techniques
- Signal in single dimension at the input is spread across the multiple dimension at output.

GSM-MBM:

- MBM is combined with generalized spatial modulation(GSM) is called GSM-MBM
- A subset of $N_{a} \mathrm{tx}$ antennas are active out of N_{t} rf chains at any time, a constellation symbol from signal set of size M is sent on each active chain, and $N_{r} f$ mirrors per antenna are used for perturbing thje environment near the active antennas.
- A total of $\log \binom{N_{t}}{N_{r f}}+N_{a} N_{\text {rf }}+n_{a} \log _{2}^{M}$ bits are sent per channel use(bpcu)

Fig. 2. GSM-MBM transmitter.

system model:

$$
\mathbf{y}=\Phi \mathbf{x}+\mathbf{w}
$$

observation vector, $\mathbf{y} \in \mathbb{C}^{M}$,
vector to be estimated, $\mathbf{x} \in \mathbb{C}^{N}$
\mathbf{w} is $A W G N$ noise vector i.e. $\sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{N}\right)$.

- In GSM-MBM system model, $M=N_{r x}$ is number of receive antennas, $N=N_{t} * 2^{N_{r f}}$ where N_{t} is no.of transmit antennas, $N_{\text {rf }}$ is no.of rf mirrors per antenna.

Goal: Estimate the unknown vector \mathbf{x}

- In GSM-MBM model only N_{a} number of rf chains are active, and corresponding to each active antenna, one mirror pattern is activated out of $2^{N_{\text {rf }}}$ mirror patterns.
- The vector \mathbf{x} has inherent structured sparsity.
- The vector \mathbf{x} is block sparse with only N_{a} number of active blocks and within each active block of size $2^{N_{\text {rf }}}$ only one mirror pattern is active at anytime. Following figure depicts structure of \mathbf{x}

active block with one active element

inactive block

Figure 1: Block sparse vector with one active alement in each active block

- The above system can be modeled as

$$
\begin{gathered}
\mathbf{y}=\text { ФDEz }+\mathbf{w} \\
\text { where } \mathbf{D}=\operatorname{diag}(\mathbf{d}) \otimes \mathbf{I}, \mathbf{d}=\left[d_{1}, d_{2}, \ldots, d_{B}\right]^{T}, \\
\mathbf{E}=\operatorname{diag}(\mathbf{e}), \mathbf{e}=\left[e_{11}, e_{12}, \ldots, e_{B M}\right]^{T}, \\
\mathbf{z}=\left[z_{11}, z_{12}, \ldots, z_{B M}\right]^{T}, z_{i j} \sim \mathcal{N}\left(0, \gamma_{i}\right)
\end{gathered}
$$

- Structured sparsity is controlled by variables $d_{i}, e_{i j} i \in[1, B], j \in[1, M]$ having prior distributions as follows:

$$
\begin{aligned}
& \mathbf{p}\left(d_{1}, \ldots, d_{B}\right)=\frac{\exp \left\{-\alpha\left(N_{a}-\sum_{i=1}^{B} d_{i}\right)^{2}\right\}}{d_{\text {const }}}, \\
& \mathbf{p}\left(e_{11}, \ldots, e_{B M} / \mathbf{d}\right)=\prod_{i=1}^{B} \mathbf{p}\left(e_{i 1}, \ldots, e_{i M} / d_{i}\right)=\prod_{i=1}^{B} \frac{\exp \left\{-\alpha\left(d_{i}-\sum_{j=1}^{M} e_{i j}\right)^{2}\right\}}{e_{\text {const }}}
\end{aligned}
$$

Problem formulation:

$$
\begin{aligned}
\widehat{\mathbf{d}}_{M A P} & =\underset{\mathbf{d}}{\arg \max } \ln \mathbf{p}\left(\mathbf{d} \mid \mathbf{y}, \Phi, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right) \\
& =\underset{\mathbf{d}}{\arg \max } \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right) \mathbf{p}(\mathbf{d}) \\
& =\underset{\mathbf{d}}{\arg \max } \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right)+\ln \mathbf{p}(\mathbf{d})
\end{aligned}
$$

where,

$$
\begin{aligned}
& \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{z} ; \sigma^{2}\right)=-\frac{\|\mathbf{y}-\Phi \mathbf{D E} \mathbf{z}\|^{2}}{2 \sigma^{2}}-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right) \\
& \ln \mathbf{p}(\mathbf{d})=-\alpha\left(N_{a}-\sum_{i=1}^{B} d_{i}\right)^{2}-\ln \left(d_{\text {const }}\right)
\end{aligned}
$$

Let us define $\mathbf{f}(\mathbf{d}) \triangleq \frac{\left\|\mathbf{y}-\phi \mathrm{DEz}_{z}\right\|^{2}}{2 \sigma^{2}}+\alpha\left(N_{a}-\sum_{i=1}^{B} d_{i}\right)^{2}$, then

$$
\begin{align*}
\widehat{\mathbf{d}}_{M A P} & =\underset{\mathbf{d}}{\arg \max }-\mathbf{f}(\mathbf{d}) \tag{1}\\
& =\underset{\mathbf{d}}{\arg \min } \mathbf{f}(\mathbf{d}) \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\widehat{\mathbf{e}}_{M A P} & =\underset{\mathbf{e}}{\arg \max } \ln \mathbf{p}\left(\mathbf{e} \mid \mathbf{y}, \mathbf{d}, \mathbf{z} ; \sigma^{2}\right) \\
& =\underset{\mathbf{e}}{\arg \max } \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right) \mathbf{p}(\mathbf{e} / \mathbf{d}) \mathbf{p}(\mathbf{d}) \\
& =\underset{\mathbf{d}}{\arg \max } \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right)+\ln \mathbf{p}(\mathbf{e} / \mathbf{d})+\ln \mathbf{p}(\mathbf{d})
\end{aligned}
$$

where,

$$
\ln \mathbf{p}(\mathbf{e} / \mathbf{d})=\sum_{i=1}^{B}-\alpha\left(d_{i}-\sum_{i=1}^{M} e_{i j}\right)^{2}-\ln \left(e_{\text {const }}\right)
$$

Let us define $\mathbf{f}(\mathbf{e}) \triangleq \frac{\|\mathbf{y}-\Phi \mathrm{DEz}\|^{2}}{2 \sigma^{2}}+\sum_{i=1}^{B} \alpha\left(d_{i}-\sum_{i=1}^{M} e_{i j}\right)^{2}$

$$
\begin{align*}
\widehat{\mathbf{e}}_{M A P} & =\underset{\mathbf{e}}{\arg \max }-\mathbf{f}(\mathbf{e}) \tag{3}\\
& =\underset{\mathrm{e}}{\arg \min } \mathbf{f}(\mathbf{e}) \tag{4}
\end{align*}
$$

$$
\begin{aligned}
\widehat{\mathbf{z}}_{M A P} & =\underset{\mathbf{z}}{\arg \max } \ln \mathbf{p}\left(\mathbf{z} \mid \mathbf{y}, \mathbf{d}, \mathbf{e} ; \sigma^{2}\right) \\
& =\underset{\mathbf{z}}{\arg \max } \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right) \mathbf{p}(\mathbf{z}) \\
& =\underset{\mathbf{d}}{\arg \max } \ln \mathbf{p}\left(\mathbf{y} \mid \mathbf{d}, \mathbf{e}, \mathbf{z} ; \sigma^{2}\right)+\ln \mathbf{p}(\mathbf{z})
\end{aligned}
$$

Solving the optimization problems:

Steepest Descent method is used to solve optimization problems of (2) and (4). Updating d using Steepest descent method as follows:

$$
\mathbf{d}_{t+1}=\mathbf{d}_{t}-\left.\mu_{d} \frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathbf{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}
$$

$$
\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathbf{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}=\frac{\Phi^{H}(\Phi \mathbf{D E z}-y)(\mathbf{E z})^{H}}{\sigma^{2}}+2 \alpha\left(\sum_{i=1}^{B} d_{i}-N a\right)(\mathbf{1})_{N \times 1}
$$

Step size μ can calculated by setting $\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mu_{d}}\right|_{\mathbf{d}=\mathbf{d}_{t+1}}=0$

$$
\begin{aligned}
& \frac{\operatorname{real}\left\{\left(\mathbf{y}^{H} \Phi\left(\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathbf{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}_{\mathrm{z}}-(\Phi \mathrm{DEz})^{H} \Phi\left(\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathbf{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}\right\}\right.}{\sigma^{2}}+2 \alpha\left(N a-\sum_{i=1}^{B} d_{i}\right)\left(\left.\sum_{i=1}^{B} \frac{\partial \mathbf{f}\left(d_{i}\right)}{\partial d_{i}}\right|_{d_{i}=d_{i t}}\right) \\
& \mu_{d}=\frac{\left(\Phi\left(\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathbf{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathbf{E z}^{)^{H} \Phi\left(\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathbf{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}^{2}}+2 \alpha\left(\left.\sum_{i=1}^{B} \frac{\partial \mathbf{f}\left(d_{i}\right)}{\partial d_{i}}\right|_{d_{i}=d_{i t}}\right)^{2}\right.}{\frac{\sigma^{2}}{2}}
\end{aligned}
$$

Updating e using Steepest descent method as follows:

$$
\begin{aligned}
& \mathbf{e}_{t+1}=\mathbf{e}_{t}-\left.\mu_{e} \frac{\partial \mathbf{f}(\mathbf{e})}{\partial \mathbf{e}}\right|_{\mathbf{e}=\mathbf{e}_{t}} \\
& \left.\frac{\partial \mathbf{f}(\mathbf{e})}{\partial \mathbf{e}}\right|_{\mathbf{e}=\mathbf{e}_{t}}=\frac{(\Phi \mathbf{D})^{H}(\Phi \mathbf{D E z}-y)(\mathbf{z})^{H}}{\sigma^{2}}+2 \alpha \sum_{i=1}^{B}\left(\sum_{j=1}^{M} \mathrm{e}_{i j}-d_{i}\right)(\mathbf{1})_{N \times 1}
\end{aligned}
$$

Step size μ can calculated by setting $\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mu_{e}}\right|_{\mathbf{d}=\mathbf{d}_{t+1}}=0$

$$
\frac{\frac{\operatorname{real}\left\{\left(\mathbf{y}^{H} \Phi\left(\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathrm{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}-(\Phi \mathrm{DEz})^{H} \Phi\left(\left.\frac{\partial \mathbf{f}(\mathbf{d})}{\partial \mathrm{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}\right\}\right.}{\sigma^{2}}+2 \alpha\left(N a-\sum_{i=1}^{B} d_{i}\right)\left(\left.\sum_{i=1}^{B} \frac{\partial \mathbf{f}\left(d_{i}\right)}{\partial d_{i}}\right|_{d_{i}=d_{i t}}\right)}{\frac{\left(\Phi\left(\left.\frac{\partial \mathbf{f (d)}}{\partial \mathrm{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}\right)^{H} \Phi\left(\left.\frac{\partial \mathbf{f}(\mathrm{~d})}{\partial \mathrm{d}}\right|_{\mathbf{d}=\mathbf{d}_{t}}\right) \mathrm{Ez}}{\sigma^{2}}+2 \alpha\left(\left.\sum_{i=1}^{B} \frac{\partial \mathbf{f}\left(d_{i}\right)}{\partial d_{i}}\right|_{d_{i}=d_{i t}}\right)^{2}}
$$

Estimation of z using Type-II ML:

- We assume a z has Gaussian distribution with mean zero and variance Γ, where $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{N}\right)$
- Given d, e the likelihood function of \mathbf{z} is also a Gaussian with distribution $\sim \mathcal{N}\left(\right.$ ФDEz, $\left.\sigma^{2} \mathbf{I}_{\mathbf{N}}\right)$
- The posterior distribution $\mathbf{p}\left(\mathbf{z} \mid \mathbf{y}, \mathbf{d}, \mathbf{e} ; \sigma^{2}\right)$ is multivariate Gaussian with mean μ_{z} and covariance Σ_{0}
where

$$
\begin{aligned}
& \mu_{z}=\sigma^{-2} \sigma_{0}(\Phi \mathbf{D E})^{H} \mathbf{y} \\
& \Sigma_{0}=\Gamma^{-1}-\Gamma^{-1}(\Phi \mathbf{D E})^{H}\left(\sigma^{2} \mathbf{I}_{N}+\Phi \mathbf{D E} \Gamma^{-1}(\Phi \mathbf{D E})^{H}\right)^{-1} \Phi \mathbf{D E} \Gamma^{-1}
\end{aligned}
$$

- Using Type-II ML estimator, the update for Γ can be expressed as $\Gamma=\left|\mu_{z}\right|^{2}+\operatorname{diag}\left(\Sigma_{0}\right)$

Iterative Bayesian Algorithm:

- Initialize z with LS square solution
- Initialize \mathbf{d} and \mathbf{e} from mathbf $z_{\text {init }}$
- while $\left|\mathbf{z}_{t}-\mathbf{z}_{t-1}\right|<\epsilon$

Update d using steepest descent Update e using steepest descent Update z using EM-SBL threshold d, e

Simulation results:

Future work

- penalty for forcing entries of \mathbf{d}, e to either 0 or 1
- Handling of concave part in objective function which results from penalty added for forcing $d_{i}, e_{i j} \in\{0,1\}$

