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MBM: Media Based Modulation

I Varying the end to end channel
based on the input is called
Media Based Modulation.

I Carrier is modulated after
leaving the transmitter by
changing RF properties of the
medium.

I All others traditional
modulations are referred as
Source Based
Modulations(SBM).

I Small perturbation near the tx in
a rich scattering environment
results an independent
end-to-end channel. RF mirrors
are used for creating
perturbations.

I If rs bits are used for SBM and
rm bit for MBM, total rs + rm
can be transmitted by combining
SBM and MBM, and receiver
will receive one of the points
from constellation of 2(rs+rm)

points.



Advantages of MBM

I Increasing the spectral efficiency without increasing energy unlike SBM,
where increasing rs results exponential increase in energy.

I Deep fades do not have persisting effect because of Constellation
diversity. As constellation size increases, this converts static multi-path
fading channel into non-fading AWGN.

I In a 1xD SIMO-MBM system received vector spans in D receive
dimension unlike SIMO-SBM which spans in single complex dimension,
which is equivalent to SIMO-SBM with D times bandwidth.

I Possibility of choosing subset of channel similar to multi user diversity
gain in scheduling.

Disadvantages of MBM

I Random arrangements of constellation points and all points are used with
equal probability. While in SBM constellation can be used with non
uniform probability to realize shaping gain.

I MBM is Linear Time variant, can trouble the traditional channel
equalization techniques

I Signal in single dimension at the input is spread across the multiple
dimension at output.



GSM-MBM:

I MBM is combined with generalized spatial modulation(GSM) is called
GSM-MBM

I A subset of Na tx antennas are active out of Nt rf chains at any time, a
constellation symbol from signal set of size M is sent on each active
chain, and Nr f mirrors per antenna are used for perturbing thje
environment near the active antennas.

I A total of log
(
Nt
Nrf

)
+ NaNrf + na logM

2 bits are sent per channel use(bpcu)



system model:
y = Φx + w

observation vector, y ∈ CM ,
vector to be estimated, x ∈ CN

w is AWGN noise vector i.e. ∼ N (0, σ2IN).

I In GSM-MBM system model, M = Nrx is number of receive antennas,
N = Nt ∗ 2Nrf where Nt is no.of transmit antennas, Nrf is no.of rf mirrors
per antenna.

Goal: Estimate the unknown vector x

I In GSM-MBM model only Na number of rf chains are active, and
corresponding to each active antenna, one mirror pattern is activated out
of 2Nrf mirror patterns.

I The vector x has inherent structured sparsity.



I The vector x is block sparse with only Na number of active blocks and
within each active block of size 2Nrf only one mirror pattern is active at
anytime. Following figure depicts structure of x



I The above system can be modeled as
y = ΦDEz + w

where D = diag(d)⊗ I, d = [d1, d2, . . . , dB ]T ,
E = diag(e), e = [e11, e12, . . . , eBM ]T ,
z = [z11, z12, . . . , zBM ]T , zij ∼ N (0, γi )

I Structured sparsity is controlled by variables di ,eij i ∈ [1,B], j ∈ [1,M]
having prior distributions as follows:

p(d1, . . . , dB) =

exp {−α
(
Na −

B∑
i=1

di

)2

}

dconst
,

p(e11, . . . , eBM/d) =
B∏
i=1

p(ei1, . . . , eiM/di ) =
B∏
i=1

exp {−α

(
di −

M∑
j=1

eij

)2

}

econst
,



Problem formulation:

d̂MAP = arg max
d

ln p(d|y,Φ, e, z;σ2)

= arg max
d

ln p(y|d, e, z;σ2)p(d)

= arg max
d

ln p(y|d, e, z;σ2) + ln p(d)

where,

ln p(y|d, z;σ2) = −‖y − ΦDEz‖2

2σ2
− 1

2
ln
(

2πσ2
)

ln p(d) = −α

(
Na −

B∑
i=1

di

)2

− ln(dconst)

Let us define f(d)
∆
= ‖y−ΦDEz‖2

2σ2 + α

(
Na −

B∑
i=1

di

)2

, then

d̂MAP = arg max
d

− f (d) (1)

= arg min
d

f (d) (2)



êMAP = arg max
e

ln p(e|y, d, z;σ2)

= arg max
e

ln p(y|d, e, z;σ2)p(e/d)p(d)

= arg max
d

ln p(y|d, e, z;σ2) + ln p(e/d) + ln p(d)

where,

ln p(e/d) =
B∑
i=1

−α

(
di −

M∑
i=1

eij

)2

− ln(econst)

Let us define f(e)
∆
= ‖y−ΦDEz‖2

2σ2 +
B∑
i=1

α

(
di −

M∑
i=1

eij

)2

êMAP = arg max
e

− f (e) (3)

= arg min
e

f (e) (4)



ẑMAP = arg max
z

ln p(z|y, d, e;σ2)

= arg max
z

ln p(y|d, e, z;σ2)p(z)

= arg max
d

ln p(y|d, e, z;σ2) + ln p(z)



Solving the optimization problems:
Steepest Descent method is used to solve optimization problems of (2) and (4).
Updating d using Steepest descent method as follows:

dt+1 = dt − µd
∂f(d)

∂d
|d=dt

∂f(d)

∂d
|d=dt =

ΦH(ΦDEz− y)(Ez)H

σ2
+ 2α

(
B∑
i=1

di − Na

)
(1)N×1

Step size µ can calculated by setting
∂f(d)

∂µd
|d=dt+1 = 0

µd =

real{(yHΦ
(

∂f(d)
∂d
|d=dt

)
Ez−(ΦDEz)HΦ

(
∂f(d)
∂d
|d=dt

)
Ez}

σ2 + 2α

(
Na−

B∑
i=1

di

)(
B∑
i=1

∂f(di )
∂di
|di=di t

)
(

Φ
(

∂f(d)
∂d
|d=dt

)
Ez

)H
Φ
(

∂f(d)
∂d
|d=dt

)
Ez

σ2 + 2α

(
B∑
i=1

∂f(di )
∂di
|di=di t

)2



Updating e using Steepest descent method as follows:

et+1 = et − µe
∂f(e)

∂e
|e=et

∂f(e)

∂e
|e=et =

(ΦD)H (ΦDEz− y)(z)H

σ2
+ 2α

B∑
i=1

(
M∑
j=1

eij − di

)
(1)N×1

Step size µ can calculated by setting
∂f(d)

∂µe
|d=dt+1 = 0

µe =

real{(yHΦ
(

∂f(d)
∂d
|d=dt

)
Ez−(ΦDEz)HΦ

(
∂f(d)
∂d
|d=dt

)
Ez}

σ2 + 2α

(
Na−

B∑
i=1

di

)(
B∑
i=1

∂f(di )
∂di
|di=di t

)
(

Φ
(

∂f(d)
∂d
|d=dt

)
Ez

)H
Φ
(

∂f(d)
∂d
|d=dt

)
Ez

σ2 + 2α

(
B∑
i=1

∂f(di )
∂di
|di=di t

)2

Estimation of z using Type-II ML:

I We assume a z has Gaussian distribution with mean zero and variance Γ,
where Γ = diag(γ1, . . . , γN)

I Given d, e the likelihood function of z is also a Gaussian with distribution
∼ N (ΦDEz, σ2IN)



I The posterior distribution p
(
z|y, d, e;σ2

)
is multivariate Gaussian with

mean µz and covariance Σ0

where
µz = σ−2σ0 (ΦDE)H y

Σ0 = Γ−1 − Γ−1 (ΦDE)H
(
σ2IN + ΦDEΓ−1 (ΦDE)H

)−1

ΦDEΓ−1

I Using Type-II ML estimator, the update for Γ can be expressed as
Γ = |µz |2 + diag(Σ0)

Iterative Bayesian Algorithm:

I Initialize z with LS square solution

I Initialize d and e from mathbf zinit

I while |zt − zt−1| < ε
Update d using steepest descent
Update e using steepest descent
Update z using EM-SBL
threshold d, e



Simulation results:
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Future work

I penalty for forcing entries of d, e to either 0 or 1

I Handling of concave part in objective function which results from penalty
added for forcing di , eij ∈ {0, 1}


