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Overview of the MM Algorithm

The MM algorithm is not an algorithm, but a prescription for
constructing optimization algorithms.

The EM algorithm from statistics is a special case.

An MM algorithm operates by creating a surrogate function
that minorizes or majorizes the objective function. When the
surrogate function is optimized, the objective function is
driven uphill or downhill as needed.

In minimization MM stands for majorize/minimize, and in
maximization MM stands for minorize/maximize.
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MM Principle

generate an algorithm that avoids matrix inversion

separate the parameters of a problem

linearize an optimization problem

deal with equality and inequality constraints

turn a non-differentiable problem into a smooth problem

the existence of a closed-form optimizer
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MM Algorithm

Optimization prob:
min
x∈χ

f (x)

where χ :nonempty closed set in Rn and f : χ→ R
continuous function.

Initialized as x0 ∈ χ, MM generates a sequence of feasible
points (xt)t∈N

g(x |xt) : χ→ R is said to majorize the function f (x) at xt
provided f (xt) = g(xt |xt) andf (x) ≤ g(x |xt) ∀ x ∈ χ
The majorization relation between functions is closed under
the formation of sums, nonnegative products, limits, and
composition with an increasing function.

xt+1 = arg minx∈χ g(x |xt+1)

A function g(x |xt) is said to minorize the function f (x) at xt
provided −g(x |xt) majorizes −f (x)
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Convergence of MM

f (xt+1) ≤ g(xt+1|xt) ≤ g(xt |xt) = f (xt)⇒ (f (xt)) is
nonincreasing and converges to a limit f ∗ by the assumption
that f is bounded below.

establish the conditions that guarantee f ∗ being a stationary
value and also the convergence of the sequence (xt)t∈N.

The convexity of χ and continuity of f are minimum
assumptions for a unified study of algorithm convergence.
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Unconstrained Optimization:Assumptions

(A1) The sublevel set lev≤f (x0)f := {x ∈ χ|f (x) ≤ f (x0)} is
compact given that f (x0) <∞
(A2.1) f (x) and g(x |xt) are continuously differentiable with
respect to x

(A3.1) g(x |xt) is continuous in x and xt .

the set of stationary points of f is defined as

χ∗ = {x ∈ χ|∇f (x) = 0}
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Unconstrained Optimization:Results

(C1) Any limit point x∞ of (xt) is a stationary point of f

(C2) f (xt) ↓ f ∗ monotonically and f (x) = f ∗ with x ∈ χ∗

M : Rn → Rn ⇒ xt 7−→ xt+1

(C3) If f (M(x)) = f (x), then x ∈ χ∗ and x ∈ arg min g(·|x)

(C4) If x is a fixed point of M, then x is a convergent point
of MM and belongs to χ∗
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Assumptions

convergence of sequence (xt)t∈N to a stationary point

(A4.1) Set χ∗ is a singleton;

(A4.2) Set is χ∗ discrete and ‖xt+1 − xt‖ → 0

(A4.3) Set χ∗ is discrete, and g(·|x) has a unique global
minimum for all x ∈ χ∗
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Constrained Optimization with Smooth Objective
Function:

With χ convex and f continuously differentiable, the set of
stationary points is defined as

χ∗ = {x |∇f (x)T (y − x) ≥ 0, y ∈ χ}
Conclusions (C1)− (C4) still hold under Assumptions
(A1), (A2.1) and (A3.1)
(A3.1) can be replaced by (A3.2) For all xt generated by the
algorithm, there exists γ > 0 such that ∀x

(∇g(x |xt)−∇g(xt |xt))T (x − xt) ≤ γ‖x − xt‖2

Assumption (A3.2) is equivalent to stating that g(x |xt) can
be uniformly upperbounded by a quadratic function with the
Hessian matrix being γI , which is easier to verify than (A3.1)
when g(x |xt) has a complicated form3.
Convergence of sequence (xt)t∈N to a stationary point can be
proved by further requiring (A4.1) or (A4.2).
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Constrained Optimization With Non-Smooth Objective

f and g(·|x) are nonsmooth, but their directional derivatives
exist for all feasible directions.

The set of stationary points is defined as

χ∗ = {x |f ′(x ; d) ≥ 0, ∀ x + d ∈ χ}

where

f
′
(xt ; d) := lim inf

λ↓0

f (xt + λd)− f (xt)

λ

is the directional derivative of f at xt in direction d .

(A2.2) f
′
(xt ; d) = g

′
(xt ; d |xt)

Under Assumptions (A1), (A2.2), (A3.1), the sequence (xt)t∈N
converges to χ∗ , i.e.,

lim
t→∞

inf
x∈χ∗
‖x − xt‖2 = 0
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First Order Taylor Expansion

f (x) = f0(x) + fccv (x) where fccv is a differentiable concave
function.

Linearizing fccv at x = xt yields the following inequality:

fccv (x) ≤ fccv (xt) +∇fccv (xt)
T (x − xt)

f (x) ≤ f0(x) +∇fccv (xt)
T x+ constant
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Example and application

Example: log(x) ≤ log(xt) + 1
xt

(x − xt) with equality achieved at
x = xt
Reweighted l1−norm Minimization:

min
x

n∑
i=1

log(ε+ |xi |) sub to y = Ax , ε > 0

The reweighted l1−normminimization algorithm solves the above
problem by solving

min
x

n∑
i=1

|xi |
ε+ |x ti |

sub to y = Ax

at the t-th iteration, which is an MMstep by applying the above
inequality to the objective function.
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Example

Given a convex, a linear, and a concave function, fcvx , flin and
fccv respectively, if their values and gradients are equal at
some xt , then, for any x ,

fcvx ≤ flin ≤ fccv

Example: Function |x |p, 0 < p < 1, which is concave on
(−∞, 0] and [0,∞), can be upperbounded as

|x |p = |xt |p−2x2 + constant

providing that xt 6= 0.
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lp−Norm Minimization:

minx ‖Ax − b‖pp, where b ∈ Rm. Construct a quadratic
surrogate function:

g(x |xt) =
m∑
i=1

w t
i (bi − Ai ,:x)2

where w t
i is given by

w t
i = |bi − Ai ,:x |p−2

Function g(x |xt) admits a closed-form minimizer

xt+1 = (ATWtA)−1ATWtb

A similar idea has been applied in solving the sparse
representation problems

min
x
‖Ax − b‖22 + λ‖x‖1

and
min
x
‖x‖1 sub to b = Ax
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Arithmetic-Geometric Mean Inequality

Example:
n∏

i=1

xαi
i ≥

n∏
i=1

(x ti )αi (1 +
n∑

i=1

αi log xi −
n∑

i=1

αi log x ti )

The arithmetic-geometric mean inequality states that
n∏

i=1

zαi
i ≤

n∑
i=1

αi

‖α‖1
z
‖α‖1
i ,

where zi , αi ≥ 0. Equality is achieved when the z ′i are equal.

Let zi = xi
x ti

for αi > 0 and zi = ( xi
x ti

)−1 for αi < 0

n∏
i=1

xαi
i ≥

n∏
i=1

(x ti )αi

n∑
i=1

αi

‖α‖1
(
xi
x ti

)‖α‖1

Equality is achieved at xi = x ti ∀ i = 1, . . . , n

Upperbound and lowerbound serve as the basic ingredients for
deriving MM algorithms for signomial programming.
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Example

Example: A posynomial
∑n

i=1 ui (x), where ui (x) is monomial

n∑
i=1

ui (x) ≥
n∏

i=1

(
ui (x)

αi

)αi

where αi = ui (xt)∏n
i=1 ui (xt)

. Equality is achieved at x = xt

Example

‖x‖2 ≤
1

2

(
‖xt‖2 +

‖x‖22
‖xt‖22

)
given that ‖xt‖2 6= 0. Equality holds at x = xt .
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Cauchy-Schwartz inequality

Cauchy-Schwartz inequality states that

xT y ≤ ‖x‖2‖y‖2

Equality is achieved when x and y are collinear.

Example

aHx ≥ Re(xHt aaHx)

|aHxt |

given that aHxt 6= 0. Equality is achieved at x = xt

Example

‖x‖2 ≥
xT xt
‖xt‖2

given that ‖xt‖2 6= 0. Equality is achieved at x = xt
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Convexity Inequality

For a convex function fcvx , we have the following inequality:

fcvx(
n∑

i=1

wixi ) ≤
n∑

i=1

wi fcvx(xi )

where
∑n

i=1 wi , wi ≥ 0. Equality can achieved if the x ′i s are
equal, or for different x ′i s if fcvx is not strictly convex.

Jensens Inequality: Let f : χ→ R be a convex function and
x be a random variable that take values in χ. Assuming that
E(x) and E(f (x)) are finite, then

E(f (x)) ≥ f (E(x)).

With Jensens inequality we can show that EM is a special
case of MM
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Example

n∑
i=1

αi log fi (x) ≤
n∑

i=1

αi log fi (xt)+(
n∑

i=1

αi ) log

(∑n
i=1 αi

fi (x)
fi (xt)∑n

i=1 αi

)
where fi (x) > 0, αi > 0∀i . Equality is achieved at x = xt .

n∑
i=1

αi log fi (x) ≤
n∑

i=1

αi

(
log fi (xt) +

1

fi (xt)
(fi (x)− fi (xt))

)
The concave upperbound is tighter, thus is preferred for a
faster convergence rate

20 / 23



Construction by Second Order Taylor Expansion

Descent Lemma: Let f : Rn → R be a continuously
differentiable function with a Lipschitz continuous gradient
and Lipschitz constant L. Then, for all x , y ∈ Rn

f (x) ≤ f (y) +∇f (y)T (x − y) +
L

2
‖x − y‖2

More generally, if f has bounded curvature, i.e., there exists a
matrix M such that M ≥ ∇2f (x), x ∈ χ, then the following
inequality implied by Taylors theorem holds:

f (x) ≤ f (y) +∇f (y)T (x − y) +
1

2
(x − y)TM(x − y)

Example: For f (x) = xHLx , the following inequality holds

xHLx ≤ xHMx + Re(xH(L−M)xt) + xHt (M − L)xt ,

where M ≥ L. Equality holds at x = xt .
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Thank You
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