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Overview of the MM Algorithm

@ The MM algorithm is not an algorithm, but a prescription for
constructing optimization algorithms.

@ The EM algorithm from statistics is a special case.

@ An MM algorithm operates by creating a surrogate function
that minorizes or majorizes the objective function. When the
surrogate function is optimized, the objective function is
driven uphill or downhill as needed.

@ In minimization MM stands for majorize/minimize, and in
maximization MM stands for minorize/maximize.



MM Principle

generate an algorithm that avoids matrix inversion
separate the parameters of a problem

linearize an optimization problem

deal with equality and inequality constraints

turn a non-differentiable problem into a smooth problem

the existence of a closed-form optimizer



MM Algorithm

@ Optimization prob:
min f(x)

XEX

where x :nonempty closed set in R” and f: y = R
continuous function.

@ Initialized as xp € x, MM generates a sequence of feasible
points (x¢)een

@ g(x|x¢): x — R is said to majorize the function f(x) at x;
provided f(x;) = g(x¢|xt) andf(x) < g(x|x¢) Vx € x

@ The majorization relation between functions is closed under
the formation of sums, nonnegative products, limits, and
composition with an increasing function.

® X1 = argmingey g(X|xe+1)

@ A function g(x|x) is said to minorize the function f(x) at x;
provided —g(x|x;) majorizes —f(x)



Convergence of MM

o f(xer1) < g(xet1lxe) < glxelxe) = f(xe) = (f(xe)) is
nonincreasing and converges to a limit f* by the assumption
that f is bounded below.

@ establish the conditions that guarantee f* being a stationary
value and also the convergence of the sequence (x¢)ten-

@ The convexity of x and continuity of f are minimum
assumptions for a unified study of algorithm convergence.
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Unconstrained Optimization:Assumptions

© (A1) The sublevel set lev¢(,\f := {x € x|f(x) < f(x0)} is
compact given that f(xp) < co

e (A2.1) f(x) and g(x|x¢) are continuously differentiable with
respect to x

e (A3.1) g(x|xt) is continuous in x and x; .

@ the set of stationary points of f is defined as

X" = {x ex|Vf(x) =0}



Unconstrained Optimization:Results

@ (C1) Any limit point xs of (x¢) is a stationary point of f

@ (C2) f(x¢) | f* monotonically and f(x) = f* with x € x*

o M:R" - R" = xt — X¢y1

e (C3) If f(M(x)) = f(x), then x € x* and x € arg min g(-|x)

@ (C4) If x is a fixed point of M, then x is a convergent point
of MM and belongs to x*



@ convergence of sequence (X¢)tcn to a stationary point
o (A4.1) Set x* is a singleton;
o (A4.2) Set is x* discrete and ||x¢+1 — x¢|]| — O

o (A4.3) Set x* is discrete, and g(+|x) has a unique global
minimum for all x € x*



Constrained Optimization with Smooth Objective

Function:

o With x convex and f continuously differentiable, the set of
stationary points is defined as

X' = {XIVA(x)T(y =x) >0,y € x}
e Conclusions (C1) — (C4) still hold under Assumptions
(A1), (A2.1) and (A3.1)
@ (A3.1) can be replaced by (A3.2) For all x; generated by the
algorithm, there exists v > 0 such that Vx

(Velxlx) = Ve bxelx) T(x —xe) < vllx — xel|?

@ Assumption (A3.2) is equivalent to stating that g(x|x;) can
be uniformly upperbounded by a quadratic function with the
Hessian matrix being «y/, which is easier to verify than (A3.1)
when g(x|x;) has a complicated form3.

e Convergence of sequence (x:):c to a stationary point can be
proved by further requiring (A4.1) or (A4.2).
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Constrained Optimization With Non-Smooth Objective

e f and g(-|x) are nonsmooth, but their directional derivatives
exist for all feasible directions.

@ The set of stationary points is defined as
X ={x|f (x;d)>0,Vx+dex}
where

f,(xt; d) :=lim ;\rlic-’) Fxe + )‘C)”\) — f(xt)

is the directional derivative of f at x; in direction d.

o (A2.2) f'(xe;d) = g (xe; d|x)

e Under Assumptions (A1), (A2.2),(A3.1), the sequence (x¢)ten
converges to x* , i.e,,

lim inf ||[x —x¢][2=0
t—o0 xex*
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First Order Taylor Expansion

o f(x) = fo(x) + feev(x) where feq, is a differentiable concave
function.

@ Linearizing f., at x = x; yields the following inequality:
fccv(X) < fccv(Xt) + vfccv(xt)—r(x - Xt)

o f(x) < fo(x) + Vfeey(xt) T x+ constant
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Example and application

Example: log(x) < log(x¢) + = (x — x¢) with equality achieved at
X = Xt
Reweighted /;—norm Minimization:

n
min Z log(e + |xj|) subto y=Ax,e>0
X f—

The reweighted /1 —normminimization algorithm solves the above
problem by solving

mlnz:€+| 7 subto y = Ax

at the t-th iteration, which is an MMstep by applying the above
inequality to the objective function.
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@ Given a convex, a linear, and a concave function, fex, fji, and
fecy respectively, if their values and gradients are equal at
some x¢, then, for any x,

fcvx é ﬁin S fccv

e Example: Function |x|P, 0 < p < 1, which is concave on
(—00,0] and [0, 00), can be upperbounded as

x|P = |x¢|P"2x* + constant

providing that x; # 0.
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[,—Norm Minimization:

@ miny ||Ax — b||5, where b € R™. Construct a quadratic
surrogate function:

m

g(x|xt) = Z )2

where w}

is given by

wf = |b; — A;.x|P~2
e Function g(x|x;) admits a closed-form minimizer
xer1 = (ATWLA) LA Wib

@ A similar idea has been applied in solving the sparse
representation problems
min || Ax — bl3 + Allx||x

and
min||x|[1 subto b= Ax
X
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Arithmetic-Geometric Mean Inequality

o Example:

n n n n
[1x" = T[T @+ ailogxi — Y ailog )
i=1 i=1 i=1 i=1

@ The arithmetic-geometric mean inequality states that

Hza, Z Qi el
Y
ol ™

where z;, aj > 0. Equality is achieved when the z/ are equal.
o Let z; = % for a; >0 and z; = (%)_1 for a; <0

n n
[ = 116 Z
>
i=1 i=1 HaHl Xt

Equality is achieved at x; = xfVi=1,...,n
@ Upperbound and lowerbound serve as the basic ingredients for
deriving MM algorithms for signomial programming.

=y lledl
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e Example: A posynomial Y 7_; ui(x), where uj(x) is monomial

Zul >H<U, )i
i=1 i=1 i

where a; = i il(u gx) Equality is achieved at x = x;

1 X112
Ixll2 < <||Xt||2 T
2 el2

given that ||x¢||2 # 0. Equality holds at x = x;.

o Example
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Cauchy-Schwartz inequality

o Cauchy-Schwartz inequality states that

xTy <|lxlallyll2

Equality is achieved when x and y are collinear.
e Example
H Re(x!"aa'x)
a'x > —————
|3HXt’
given that a'’x; # 0. Equality is achieved at x = x;

o Example
X Xf

Ix1l2 =
[Ixtll2

given that ||x¢||2 # 0. Equality is achieved at x = x;
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Convexity Inequality

@ For a convex function f,x, we have the following inequality:
n n
fcvx(z WiXi) < Z Wifcvx(Xi)
i=1 i=1

where >~ , w;, w; > 0. Equality can achieved if the x/s are
equal, or for different x/s if £, is not strictly convex.

e Jensens Inequality: Let ¥ : x — R be a convex function and
x be a random variable that take values in x. Assuming that
E(x) and E(f(x)) are finite, then

E(f(x)) = f(E(x))-

@ With Jensens inequality we can show that EM is a special
case of MM
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S q :,-(x)
Za, log f;(x <Za, log f(x¢)+ Za, Iog( (Xt)>
Zl—l Q;j

where f;(x) > 0,a; > 0Vi. Equality is achieved at x = x;.

Za,logf <Za,<logfxt 7 t)(f()—f,-(xt))>

@ The concave upperbound is tighter, thus is preferred for a
faster convergence rate
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Construction by Second Order Taylor Expansion

@ Descent Lemma: Let f : R” — R be a continuously
differentiable function with a Lipschitz continuous gradient
and Lipschitz constant L. Then, for all x,y € R"

Fx) < FY) + VA (=) + 5 lx — I

@ More generally, if f has bounded curvature, i.e., there exists a
matrix M such that M > V?f(x), x € ¥, then the following
inequality implied by Taylors theorem holds:

1
() <F)+ V) (x=y) + S(x = y) M(x —y)
e Example: For f(x) = x"Lx, the following inequality holds
xHIx < xHMx + Re(x" (L — M)x;) + x'(M — L)x,,

where M > L. Equality holds at x = x;.
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Thank You
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