Majorization-Minimization Algorithms

Pradip Sasmal

Indian Institute of Science, Bangalore

September 22, 2018

- Basics of MM algorithm
- Convergence of MM algorithm
- Surrogate function construction
- Application

- The MM algorithm is not an algorithm, but a prescription for constructing optimization algorithms.
- The EM algorithm from statistics is a special case.
- An MM algorithm operates by creating a surrogate function that minorizes or majorizes the objective function. When the surrogate function is optimized, the objective function is driven uphill or downhill as needed.
- In minimization MM stands for majorize/minimize, and in maximization MM stands for minorize/maximize.

- generate an algorithm that avoids matrix inversion
- separate the parameters of a problem
- linearize an optimization problem
- deal with equality and inequality constraints
- turn a non-differentiable problem into a smooth problem
- the existence of a closed-form optimizer

• Optimization prob:

$$\min_{x\in\chi}f(x)$$

where χ :nonempty closed set in \mathbb{R}^n and $f : \chi \to \mathbb{R}$ continuous function.

- Initialized as $x_0 \in \chi$, MM generates a sequence of feasible points $(x_t)_{t \in \mathbb{N}}$
- $g(x|x_t): \chi \to \mathbb{R}$ is said to majorize the function f(x) at x_t provided $f(x_t) = g(x_t|x_t)$ and $f(x) \le g(x|x_t) \quad \forall x \in \chi$
- The majorization relation between functions is closed under the formation of sums, nonnegative products, limits, and composition with an increasing function.

•
$$x_{t+1} = \arg\min_{x \in \chi} g(x|x_{t+1})$$

 A function g(x|x_t) is said to minorize the function f(x) at x_t provided -g(x|x_t) majorizes -f(x)

- $f(x_{t+1}) \leq g(x_{t+1}|x_t) \leq g(x_t|x_t) = f(x_t) \Rightarrow (f(x_t))$ is nonincreasing and converges to a limit f^* by the assumption that f is bounded below.
- establish the conditions that guarantee f^* being a stationary value and also the convergence of the sequence $(x_t)_{t \in \mathbb{N}}$.
- The convexity of χ and continuity of f are minimum assumptions for a unified study of algorithm convergence.

Unconstrained Optimization: Assumptions

- (A1) The sublevel set $lev_{\leq f(x_0)}f := \{x \in \chi | f(x) \leq f(x_0)\}$ is compact given that $f(x_0) < \infty$
- (A2.1) f(x) and $g(x|x_t)$ are continuously differentiable with respect to x
- (A3.1) $g(x|x_t)$ is continuous in x and x_t .
- the set of stationary points of f is defined as

$$\chi^* = \{x \in \chi | \nabla f(x) = 0\}$$

- (C1) Any limit point x_{∞} of (x_t) is a stationary point of f
- (C2) $f(x_t) \downarrow f^*$ monotonically and $f(x) = f^*$ with $x \in \chi^*$

•
$$M: \mathbb{R}^n \to \mathbb{R}^n \Rightarrow x_t \longmapsto x_{t+1}$$

• (C3) If f(M(x)) = f(x), then $x \in \chi^*$ and $x \in \arg\min g(\cdot|x)$

 (C4) If x is a fixed point of M, then x is a convergent point of MM and belongs to χ^{*}

- convergence of sequence $(x_t)_{t\in\mathbb{N}}$ to a stationary point
- (A4.1) Set χ^* is a singleton;
- (A4.2) Set is χ^* discrete and $\|x_{t+1} x_t\| \to 0$
- (A4.3) Set χ^{*} is discrete, and g(·|x) has a unique global minimum for all x ∈ χ^{*}

Constrained Optimization with Smooth Objective Function:

 With χ convex and f continuously differentiable, the set of stationary points is defined as

$$\chi^* = \{x | \nabla f(x)^T (y - x) \ge 0, y \in \chi\}$$

- Conclusions (C1) (C4) still hold under Assumptions (A1), (A2.1) and (A3.1)
- (A3.1) can be replaced by (A3.2) For all x_t generated by the algorithm, there exists γ > 0 such that ∀x

$$(\nabla g(x|x_t) - \nabla g(x_t|x_t))^T (x - x_t) \leq \gamma ||x - x_t||^2$$

- Assumption (A3.2) is equivalent to stating that g(x|x_t) can be uniformly upperbounded by a quadratic function with the Hessian matrix being γ*I*, which is easier to verify than (A3.1) when g(x|x_t) has a complicated form3.
- Convergence of sequence (x_t)_{t∈N} to a stationary point can be proved by further requiring (A4.1) or (A4.2).

Constrained Optimization With Non-Smooth Objective

- f and $g(\cdot|x)$ are nonsmooth, but their directional derivatives exist for all feasible directions.
- The set of stationary points is defined as

$$\chi^* = \{x | f'(x; d) \ge 0, \forall x + d \in \chi\}$$

where

$$f'(x_t; d) := \lim \inf_{\lambda \downarrow 0} \frac{f(x_t + \lambda d) - f(x_t)}{\lambda}$$

is the directional derivative of f at x_t in direction d.

- (A2.2) $f'(x_t; d) = g'(x_t; d|x_t)$
- Under Assumptions (A1), (A2.2), (A3.1), the sequence $(x_t)_{t\in\mathbb{N}}$ converges to χ^* , i.e.,

$$\lim_{t\to\infty}\inf_{x\in\chi^*}\|x-x_t\|_2=0$$

- $f(x) = f_0(x) + f_{ccv}(x)$ where f_{ccv} is a differentiable concave function.
- Linearizing f_{ccv} at $x = x_t$ yields the following inequality:

$$f_{ccv}(x) \leq f_{ccv}(x_t) + \nabla f_{ccv}(x_t)^T (x - x_t)$$

• $f(x) \leq f_0(x) + \nabla f_{ccv}(x_t)^T x + \text{ constant}$

Example and application

Example: $\log(x) \le \log(x_t) + \frac{1}{x_t}(x - x_t)$ with equality achieved at $x = x_t$ **Reweighted** l_1 -norm Minimization:

$$\min_{x} \sum_{i=1}^{n} \log(\epsilon + |x_i|) \text{ sub to } y = Ax, \epsilon > 0$$

The reweighted l_1 -normminimization algorithm solves the above problem by solving

$$\min_{x} \sum_{i=1}^{n} \frac{|x_i|}{\epsilon + |x_i^t|} \quad \text{sub to} \quad y = Ax$$

at the t-th iteration, which is an MMstep by applying the above inequality to the objective function.

• Given a convex, a linear, and a concave function, f_{cvx} , f_{lin} and f_{ccv} respectively, if their values and gradients are equal at some x_t , then, for any x,

$$f_{cvx} \leq f_{lin} \leq f_{ccv}$$

• **Example:** Function $|x|^p$, $0 , which is concave on <math>(-\infty, 0]$ and $[0, \infty)$, can be upperbounded as

$$|x|^p = |x_t|^{p-2}x^2 + \text{constant}$$

providing that $x_t \neq 0$.

I_p-Norm Minimization:

min_x ||Ax − b||^p_p, where b ∈ ℝ^m. Construct a quadratic surrogate function:

$$g(x|x_t) = \sum_{i=1}^m w_i^t (b_i - A_{i,:}x)^2$$

where w_i^t is given by

$$w_i^t = |b_i - A_{i,:}x|^{p-2}$$

• Function $g(x|x_t)$ admits a closed-form minimizer

$$x_{t+1} = (A^T W_t A)^{-1} A^T W_t b$$

 A similar idea has been applied in solving the sparse representation problems

$$\min_{x} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

and

$$\min_{x} \|x\|_1 \quad \text{sub to} \quad b = Ax$$

Arithmetic-Geometric Mean Inequality

• Example:

$$\prod_{i=1}^n x_i^{\alpha_i} \ge \prod_{i=1}^n (x_i^t)^{\alpha_i} (1 + \sum_{i=1}^n \alpha_i \log x_i - \sum_{i=1}^n \alpha_i \log x_i^t)$$

• The arithmetic-geometric mean inequality states that

$$\prod_{i=1}^{n} z_{i}^{\alpha_{i}} \leq \sum_{i=1}^{n} \frac{\alpha_{i}}{\|\alpha\|_{1}} z_{i}^{\|\alpha\|_{1}},$$

where $z_i, \alpha_i \ge 0$. Equality is achieved when the z'_i are equal. • Let $z_i = \frac{x_i}{x_i^t}$ for $\alpha_i > 0$ and $z_i = (\frac{x_i}{x_i^t})^{-1}$ for $\alpha_i < 0$

$$\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \geq \prod_{i=1}^{n} (x_{i}^{t})^{\alpha_{i}} \sum_{i=1}^{n} \frac{\alpha_{i}}{\|\alpha\|_{1}} (\frac{x_{i}}{x_{i}^{t}})^{\|\alpha\|_{1}}$$

Equality is achieved at $x_i = x_i^t \forall i = 1, \dots, n$

• Upperbound and lowerbound serve as the basic ingredients for deriving MM algorithms for signomial programming.

Example

• **Example:** A posynomial $\sum_{i=1}^{n} u_i(x)$, where $u_i(x)$ is monomial

$$\sum_{i=1}^{n} u_i(x) \ge \prod_{i=1}^{n} \left(\frac{u_i(x)}{\alpha_i}\right)^{\alpha_i}$$

where
$$\alpha_i = \frac{u_i(x_t)}{\prod_{i=1}^n u_i(x_t)}$$
. Equality is achieved at $x = x_t$

• Example

$$\|x\|_2 \le \frac{1}{2} \left(\|x_t\|_2 + \frac{\|x\|_2^2}{\|x_t\|_2^2} \right)$$

given that $||x_t||_2 \neq 0$. Equality holds at $x = x_t$.

Cauchy-Schwartz inequality

• Cauchy-Schwartz inequality states that

 $x^T y \le ||x||_2 ||y||_2$

Equality is achieved when x and y are collinear.

• Example

$$a^{H}x \geq rac{\operatorname{\mathsf{Re}}(x_{t}^{H}aa^{H}x)}{|a^{H}x_{t}|}$$

given that $a^H x_t \neq 0$. Equality is achieved at $x = x_t$

• Example

$$\|x\|_2 \ge \frac{x^T x_t}{\|x_t\|_2}$$

given that $||x_t||_2 \neq 0$. Equality is achieved at $x = x_t$

• For a convex function f_{CVX} , we have the following inequality:

$$f_{cvx}(\sum_{i=1}^n w_i x_i) \leq \sum_{i=1}^n w_i f_{cvx}(x_i)$$

where $\sum_{i=1}^{n} w_i$, $w_i \ge 0$. Equality can achieved if the x'_i 's are equal, or for different x'_i 's if f_{cvx} is not strictly convex.

• Jensens Inequality: Let $f : \chi \to \mathbb{R}$ be a convex function and x be a random variable that take values in χ . Assuming that $\mathbb{E}(x)$ and $\mathbb{E}(f(x))$ are finite, then

$$\mathbb{E}(f(x)) \geq f(\mathbb{E}(x)).$$

• With Jensens inequality we can show that EM is a special case of MM

Example

۲

۲

$$\sum_{i=1}^{n} \alpha_i \log f_i(x) \leq \sum_{i=1}^{n} \alpha_i \log f_i(x_t) + \left(\sum_{i=1}^{n} \alpha_i\right) \log \left(\frac{\sum_{i=1}^{n} \alpha_i \frac{f_i(x)}{f_i(x_t)}}{\sum_{i=1}^{n} \alpha_i}\right)$$

where $f_i(x) > 0, \alpha_i > 0 \,\forall i$. Equality is achieved at $x = x_t$.

$$\sum_{i=1}^n \alpha_i \log f_i(x) \leq \sum_{i=1}^n \alpha_i \left(\log f_i(x_t) + \frac{1}{f_i(x_t)} (f_i(x) - f_i(x_t)) \right)$$

• The concave upperbound is tighter, thus is preferred for a faster convergence rate

Construction by Second Order Taylor Expansion

Descent Lemma: Let f : ℝⁿ → ℝ be a continuously differentiable function with a Lipschitz continuous gradient and Lipschitz constant L. Then, for all x, y ∈ ℝⁿ

$$f(x) \le f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} ||x - y||^2$$

More generally, if f has bounded curvature, i.e., there exists a matrix M such that M ≥ ∇²f(x), x ∈ χ, then the following inequality implied by Taylors theorem holds:

$$f(x) \leq f(y) + \nabla f(y)^T (x - y) + \frac{1}{2} (x - y)^T M (x - y)$$

• **Example:** For $f(x) = x^H Lx$, the following inequality holds

$$x^{H}Lx \leq x^{H}Mx + \operatorname{Re}(x^{H}(L-M)x_{t}) + x_{t}^{H}(M-L)x_{t},$$

where $M \ge L$. Equality holds at $x = x_t$.

Y. Sun, P. Babu, and D. P. Palomar, "Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning," IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 3, FEBRUARY 1, 2017.

Thank You