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Introduction to Stochastic Divergences

I It all started with Measure theory (Hellinger’s Integral) −→
Statistics (ISI) −→ Information Theory!

I Roughly, a Stochastic Divergence measures the similarity
between two discrete/continuous probability distributions

I Earliest examples include Hellinger’s distance,
Mahalanobis distance, Bhattacharyya distance,
Kullback-Leibler divergence etc.

Presented by Sanjeev on 6th Oct ’12 Divergences and MDGoFT



Stochastic Divergences
MD Spectrum Sensing

Test I
Test II

Conclusions

Connection to Information Theory (1/4)

I Logarithm as a measure of information [Shannon1948]
(restricted scope).

I P ,
{

P = (p1,p2, · · · ,pn) :
∑n

i=1 pi = 1,pi > 0, i = 1,2, · · · ,n
}

Q ,
{

Q = (q1,q2, · · · ,qn) :
∑n

i=1 qi = 1,qi ≥ 0, i = 1,2, · · · ,n
}

I A measure of information, H(P) = −
∑n

i=1 pi log pi (following four
postulates [Ash]).

I “Conditional entropy”, H(P||Q) = −
∑n

i=1 pi log qi

I H(P) satisfies additivity, recursivity and sum representations

Presented by Sanjeev on 6th Oct ’12 Divergences and MDGoFT



Stochastic Divergences
MD Spectrum Sensing

Test I
Test II

Conclusions

Connection to Information Theory (2/4)

I In other problems, other functions serve better as
measures of information! [Renyi1961]

I Renyi’s entropy of order α:
Hα(P) = (1− α)−1 log

(∑n
i=1 pαi

)
, α > 0, α 6= 1

I limα→1 Hα(P) = H(P)

I Hα(P) satisfies additivity, but not recursivity and sum
representations

I Renyi’s entropy finds its use in numerous applications as
well!
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Connection to Information Theory (3/4)

I [AczelDaroczy1963], [Varma1966], [Kapur1967],
[HavrdaCharvat1967], [BelisGuiasu1968], [Rathie1970],
[Arimoto1971], [SharmaMittal1975], [Taneja1975],
[Picard1979], [Ferreri1980], [Sant’annaTaneja1983], ...
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Connection to Information Theory (4/4)

I It can be shown that H(P) ≤ H(P||Q) (Shannon-Gibbs
inequality)

I Consider D(P||Q) , H(P||Q)− H(P)

I Obviously, D(P||Q) > 0, with equality iff P = Q. Visualized
as a distance metric. Not an actual metric, since it does not
satisfy the symmetric property and the triangle inequality

I D(P||Q) is called as the Kullback-Leibler divergence
[KullbackLeibler1951]

I Generalizations on entropy −→ Generalizations on
divergences!
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An Important Generalization [Csiszar1967]

I φ- (or f-) divergences φ(P||Q) =
∫
X Q(x)φ

(
P(x)
Q(x)

)
dµ(x),

with φ being a real valued convex function on (0,∞).
I Special cases include the KL, variational, χ2, Matusita,

Balakrishnan and Sanghvi, Havrda and Charvat etc.
I Notation : δ(A,B) represents a stochastic divergence
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System Model
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Test I - Interpoint Distances Theorem

Theorem (MaaPearlBartoszynski1996)
Let X1,X2, · · · ,XN be M-dimensional observations from a
known distribution F . Let Y1 and Y2 be the samples from the
hypothesized distribution G. Let δ(·, ·) be an appropriately
chosen stochastic distance function. Then, F = G if and only if
the distribution of δ(Xi ,Xj) and δ(Xi ,Y1) (and δ(Xj ,Y1)) are
same and equal to δ(Y1,Y2), for all 1 ≤ i , j ≤ N, i 6= j .
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Test I - Intuition
I Triangle formed between any two points Xi , Xj ∼ F , and

Y ∼ G. Null hypothesis is true if and only if the three sides
of the triangle have the same distribution (which was
specified earlier)

1

1
2

2

3

Xi

Xj
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Test I - Construction

I Define p1(·, ·), p2(·, ·) and p3(·, ·) as the probabilities
associated with Y ∼ G falling in the regions 1,2 and 3
respectively

I Uk , 1
(N

2)

∑
i<j pk (Xi ,Xj), k = 1,2,3, with 1 ≤ i , j ≤ N

Lemma (BartoszynskiPearlLawrence1997)
If Zk ,

Uk− 1
3√

var(Uk |H0)
, and ρk ,l , cov(Zk ,Zl |H0) for k , l ∈ {1,2,3}

and k 6= l , then
Q ,

Z 2
k +Z 2

l −2ρk,l Zk Zl

1−ρ2
k,l

∼ χ2
2, as N →∞
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Test I - Observations and Problems

I In the present form, the probabilities p1(·, ·), p2(·, ·) and
p3(·, ·) have to be estimated for a particular choice of δ(·, ·)

I The asymptotic result is very tight for N ≥ 10, for the
M-antenna, N-observations SS problem

I For a range of alternate hypothesis, this test performs
better than some of the sphericity tests

I Q statistic can be constructed from any Zk ,Zl pair. “Better”
combining of Z1,Z2 and Z3?

I What is the optimum choice of δ(·, ·)?
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Test II - Model

I Let W1,W2, · · · ,WL be the matrices of observations from
the L sensors

I Assumption : Physical layer fusion at the FC, without noise
and fading. Idea still holds without this assumption

I If noise at each antenna is complex Gaussian with known
variance, then each Wl ∼ CW(N,Σ).

I Statistic at the FC is Σ̂ , 1
L
∑L

l=1 Wl
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Test II - < h, φ > distances [Salicru et al. 1994]

I δh
φ(X ,Y ) , h

{∫
H φ
(

fX (Z;θ1)
fY (Z;θ2)

)
fY (Z; θ2)dZ

}
, where

H is the space of all Hermitian PD matrices,
h : (0,∞)→ (0,∞) is a strictly increasing function with
h(0) = 0, and φ : (0,∞)→ (0,∞) is a convex function

I The differential element
dZ = dZ11dZ22 · · · dZMM

∏M
i<j dReZijdImZij

I Let dh
φ(X ,Y ) ,

δh
φ(X ,Y )+δh

φ(Y ,X)

2
I Many divergence measures (including f -divergences) are

special cases of δh
φ
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Test II - Main Theorem

I Since the noise PDF is known, let Σ̂0 , Σ̂|H0.

Theorem (Salicru et al. 1994)
Under some regularity conditions, if Σ̂0 = Σ̂ then

Ldh
φ(Σ̂,Σ̂0)

h′ (0)φ′′ (1)

d .−−−→
L→∞

χ2
M2
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Test II - Observations and Problems

I Closed form to dh
φ(·, ·) for a suitable choice of δh

φ(·, ·)
I The asymptotic result is very tight for L ≥ 10, for the

M-antenna, N-observations, L sensors SS problem
I For a range of alternate hypothesis, this test performs

better than some of the sphericity tests
I Suitable choice of δh

φ(·, ·)?
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Conclusions

I Studied a family of stochastic divergences
I Test I based on interpoint distances; suitable for

M-antenna CR system with N-observations
I Test II based on < h, φ > distances; suitable for CR system

having L sensors with M-antenna each with
N-observations

I Comparison to Sphericity tests
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