How Much Training is Needed in Reciprocal Multiple Antenna Systems? A Diversity Multiplexing Gain Tradeoff Perspective

Chandra R. Murthy cmurthy@ece.iisc.ernet.in

Joint work with Bharath Bettagere

bharath@ece.iisc.ernet.in

Dept. of ECE, Indian Institute Science, Bangalore, India

2 Reverse Channel Training (RCT) with Perfect CSIR

3 RCT with Imperfect CSIR and CSIT

Image: Image:

Chandra R. Murthy, ECE Dept. SPC Lab, IISc

Preliminaries	System Model and Definitions
RCT with Perfect CSIR and Imperfect CSIT	Warm-Up
RCT with Imperfect CSIR and CSIT	Past Work

2 Reverse Channel Training (RCT) with Perfect CSIR

3 RCT with Imperfect CSIR and CSIT

< □ > < □ > < □ > < □ >

Chandra R. Murthy, ECE Dept. SPC Lab, IISc

Introduction

- Two fundamental quantities of interest in any communication system: reliability and throughput
 - Diversity-multiplexing gain tradeoff
- Wireless fading channel: time-varying
 - Severe loss of reliability/throughput compared to AWGN

System Model and Definitions

・ロト ・日下・ ・ ヨト

Warm-Up

Past Work

- Can improve performance by channel estimation at rx/tx using a known training signal
- What are the implications of training?
 - Imperfect CSI due to estimation error: leads to outages
 - Training duration overhead: leads to loss of throughput

Key Question

What is the effect of imperfect CSI on the DMT performance?

Introduction

- Two fundamental quantities of interest in any communication system: reliability and throughput
 - Diversity-multiplexing gain tradeoff
- Wireless fading channel: time-varying
 - Severe loss of reliability/throughput compared to AWGN

System Model and Definitions

Warm-Up

Past Work

- Can improve performance by channel estimation at rx/tx using a known training signal
- What are the implications of training?
 - Imperfect CSI due to estimation error: leads to outages
 - Training duration overhead: leads to loss of throughput

Key Question

What is the effect of imperfect CSI on the DMT performance?

イロト イヨト イヨト イヨ

Preliminaries

RCT with Perfect CSIR and Imperfect CSIT RCT with Imperfect CSIR and CSIT System Model and Definitions Warm-Up Past Work

-

크

System Model

Figure: Quasi-Static SIMO Channel with coherence time L_c . The entries of **h** are $\sim C\mathcal{N}(0, 1)$ and i.i.d. across coherence times.

System Model and Definitions Warm-Up Past Work

Performance Metric

- Reliability/probability of error
- Throughput/Data rate

- Proxy: outage probability
- Proxy: degrees of freedom

These proxies are good at high SNR¹

 $\label{eq:linear} \begin{array}{l} 1 \\ \mbox{[ZhengTse2003, TavildarViswanathTITJul2006, EliaKumarPawarKumarLuTlTSep2006]} & < \mbox{[$]} \\ \end{array} \\ \times \end{array}$

System Model and Definitions Warm-Up Past Work

Image: Image:

크

Basic Definitions

(

• The multiplexing gain *g_m* and the diversity order *d* are defined as [ZhengTse2003]:

$$g_{m} \triangleq \lim_{\bar{P} \to \infty} \frac{R_{\bar{P}}}{\log \bar{P}}$$
$$d \triangleq -\lim_{\bar{P} \to \infty} \frac{\log P_{out}}{\log \bar{P}}$$
where $P_{out} \triangleq \Pr\{\text{capacity} < R_{\bar{P}}\}.$
• We say $f(\bar{P}) \doteq \bar{P}^{k}$ to mean $\lim_{\bar{P} \to \infty} \frac{\log f(\bar{P})}{\log \bar{P}} = k$

System Model and Definitions Warm-Up Past Work

Image: A matrix

A Motivating Example

- Consider a SISO Rayleigh fading channel
- Assume perfect CSIR and no CSIT
 - Tx power constraint P
 - Rayleigh channel h, hence, $|h|^2$ is exponentially distributed
- Can show that

$$P_{out} = \Pr\left\{\log\left(1 + |h|^2 \bar{P}\right) < g_m \log \bar{P}\right\} \doteq \frac{1}{\bar{P}^{1-g_m}}$$

• Thus, the diversity order is $d(g_m) = 1 - g_m$

Preliminaries RCT with Perfect CSIR and Imperfect CSIT

System Model and Definitions Warm-Up Past Work

Can we do better?

• Consider the following power control:

RCT with Imperfect CSIR and CSIT

$$\mathcal{P}(h) riangleq eta \left\{ egin{array}{cc} ar{\mathcal{P}} & |h|^2 \geq rac{1}{ar{\mathcal{P}}}, \ ar{\mathcal{P}}^2 & |h|^2 < rac{1}{ar{\mathcal{P}}} \end{array}
ight.$$

Here β is chosen such that $\mathbb{E}\{\mathcal{P}(h)\} = \bar{P}$

- Requires 1 bit CSI feedback from rx
- In this case, the diversity order is $d(g_m) = 2 g_m!$
- Thus, with just 1 bit feedback, the diversity order doubles

Preliminaries

RCT with Perfect CSIR and Imperfect CSIT RCT with Imperfect CSIR and CSIT System Model and Definitions Warm-Up Past Work

But this is not new!

- [KhoshnevisSabharwal2004, RaghavaSharma2005] Benefits of CSIT to achievable DMT/error exponents
- [SharmaPremkumarSwamy2008] Exponential diversity at low SNR, even w/ imperfect CSIT
- [KimSkoglund2007, AggarwalSabharwal2010] Quantized feedback of the CSI *needed* at the tx
- [StegerSabharwal2008]
 Orthogonal RCT, accounting for training duration overhead
- [KimCaire2009] Improvement in DMT using power-controlled training
- [ZhangGongLetaief2011] Source- or destination-initiated training, joint rate and power control

System Model and Definitions Warm-Up Past Work

< □ > < □ > < □ > < □ >

How can one acquire CSI at Node A?

- Sending the quantized CSI through a feedback link (digital feedback)
 - Typically used in Frequency Division Duplex (FDD) systems
- Training in the reverse link (analog feedback)
 - Typically used in Time Division Duplex (TDD) systems
 - Digital and analog feedback are fundamentally different, e.g., in terms of the channel uncertainty interval
 - We will focus on reverse channel training

System Model and Definitions Warm-Up Past Work

Image: A matrix

How can one acquire CSI at Node A?

- Sending the quantized CSI through a feedback link (digital feedback)
 - Typically used in Frequency Division Duplex (FDD) systems
- Training in the reverse link (analog feedback)
 - Typically used in Time Division Duplex (TDD) systems
 - Digital and analog feedback are fundamentally different, e.g., in terms of the channel uncertainty interval
 - We will focus on reverse channel training

System Model and Definitions Warm-Up Past Work

Image: Image:

Acquiring CSI at Node A in a TDD-SIMO Channel

Figure: Training from node B to node A in a reciprocal SIMO channel

System Model and Definitions Warm-Up Past Work

< □ > < □ > < □ > < □ >

Training and Power Control in a SIMO Channel

Description	Input-Output Equation
Training: Node $B \rightarrow Node A$	$y_{A, au} = \mathbf{h}^H \mathbf{x}_{B, au} + w_{A, au}$
Data : Node $A \rightarrow Node B$	$\mathbf{y}_{B,d} = \mathbf{h} x_{A,d} + \mathbf{w}_{B,d}$

Table: Two-Way Training in a TDD-SIMO System

크

System Model and Definitions Warm-Up Past Work

SIMO Channel with Perfect CSIR and CSIT

• Let
$$\mathbf{h} = \sigma \mathbf{v}$$
, where $\sigma \triangleq \|\mathbf{h}\|_2$ and $\mathbf{v} \triangleq \frac{\mathbf{h}}{\|\mathbf{h}\|_2}$

• With a target data rate of *R*, can achieve an infinite diversity order via the following data power control:

$$\mathcal{P}(\sigma) = \boldsymbol{C} \Phi(\sigma^2)$$

where

$$\Phi(\sigma^2) riangleq rac{\exp\left(rac{RL_c}{L_c - L_{B, au}} - 1
ight)}{\sigma^2}$$

Here C is chosen to satisfy an average power constraint

• Need the value of *σ* at *Node A*

Key take-home message # 2

Channel-inversion power control using CSIT improves diversity!

Chandra R. Murthy, ECE Dept. SPC Lab, IISc

System Model and Definitions Warm-Up Past Work

Image: A matrix

Conventional Orthogonal Reverse Channel Training

- Orthogonal training sequence, e.g., $r \times r$ identity matrix
 - Minimum training duration: *r* symbols
- Channel estimation
 - MMSE estimator: $\hat{\mathbf{h}} = \mathbf{h} \tilde{\mathbf{h}}$, where $\tilde{\mathbf{h}}$ is estimation error
 - Estimate σ : $\hat{\sigma} = \|\hat{\mathbf{h}}\|_2$
- Use the estimated σ to set the data transmit power:

$$\mathcal{P}(\hat{\sigma}) = \bar{\mathcal{P}} rac{\mathcal{C}}{\hat{\sigma}^{2s}}$$

- We will consider two cases: s = 1 and s = r
- C is the power normalization constant, as before

System Model and Definitions Warm-Up Past Work

・ロト ・日下・ ・ ヨト

Achievable DMT w/ Conventional/Orthogonal Training

Theorem (StegerSabharwal2008)

$$d(g_m) \ge r\left(\delta - \frac{g_m}{\alpha}\right), \ \ \mathsf{0} \le g_m \le lpha$$

• $\alpha \triangleq \frac{L_c - rL_{B,\tau}}{L_c}$: the fractional loss due to training overhead

- $\delta = 2$ for s = 1 and $\delta = r + 1$ for s = r
- Assumes a *genie-aided receiver:* $\mathcal{P}(\hat{\sigma})$ is known at rx

Observation

The training overhead reduces the achievable DMT! Cannot achieve nonzero g_m if $r > L_c/L_{B,\tau}$. Might need to switch off antennas.

Fixed Power Training Power-Controlled Training

2 Reverse Channel Training (RCT) with Perfect CSIR

3 RCT with Imperfect CSIR and CSIT

イロト イヨト イヨト イヨト

Chandra R. Murthy, ECE Dept. SPC Lab, IISc

Fixed Power Training Power-Controlled Training

Proposed Training Scheme

• We propose the training sequence²

$$\mathbf{x}_{B, au} = \sqrt{ar{P}L_{B, au}}\mathbf{v}$$

• Estimated singular value at Node A

$$\hat{\sigma} = \frac{1}{\sqrt{\bar{P}L_{B,\tau}}} \Re \left\{ \sqrt{\bar{P}L_{B,\tau}} \sigma + w_{A,\tau} \right\} = \sigma + \bar{w}_{A,\tau}$$

 Note: The min. training duration required is just one symbol, whereas conventional training scheme requires at least r training symbols.

²[BharathMurthyICASSP2009]

SPC Lab, IISc

Fixed Power Training Power-Controlled Training

Power Control Scheme with Imperfect CSIT $\hat{\sigma}$

Recall that the power control with perfect CSIT was

$$\mathcal{P}(\sigma) = C\Phi(\sigma^2) \triangleq C \frac{\exp\left(\frac{RL_c}{L_c - L_{B,\tau}} - 1\right)}{\sigma^2}$$

Natural extension:

$$\mathcal{P}(\hat{\sigma}) = \mathcal{C}\Phi(\hat{\sigma}^2)$$

Problem! The avg. power constraint cannot be satisfied:

$$\mathbb{E}[\mathcal{P}(\hat{\sigma})] = \infty$$

Image: A matrix

Solution, Try 1

• Truncated channel inversion:

$$\mathcal{P}(\hat{\sigma}) \triangleq \kappa_{\bar{P}} \begin{cases} \Phi(\hat{\sigma}^2) & \hat{\sigma} > \theta, \\ 0 & \hat{\sigma} \le \theta \end{cases}$$

Fixed Power Training

Power-Controlled Training

Image: A matrix and a matrix

where $\theta > 0$ is some threshold.

- Choose $\theta > 0$ & $\kappa_{\overline{P}}$ to satisfy the avg. power constraint
- Still a problem: Diversity order is zero
 - $P_{out} = 1$ whenever $\hat{\sigma} \leq \theta$

Fixed Power Training Power-Controlled Training

< ∃ >

Solution, Try 2 (Proposed Power Control Scheme)

Consider

$$\mathcal{P}(\hat{\sigma}) \triangleq \begin{cases} \kappa_{\bar{P}} \Phi(\hat{\sigma}^{2s}) & \hat{\sigma} > \frac{1}{\sqrt{\bar{P}}}, \\ \bar{P}^{I} & \hat{\sigma} \le \frac{1}{\sqrt{\bar{P}}} \end{cases}$$

for some $0 \le l \le r + 1$.

Can show that for both s = 1 and s = r, there exists κ_{p̄} such that avg. power constraint is satisfied!

• Moreover,
$$\kappa_{\bar{P}} \doteq \bar{P}^{1-\frac{g_m}{\alpha}}$$
, where $\alpha \triangleq \frac{L_c - L_{B,\tau}}{L_c}$

Fixed Power Training Power-Controlled Training

< □ > < 🗗 >

Achievable DMT Result

- We have chosen
 - A new reverse channel training scheme
 - A new power control scheme
 - So, question: what is its DMT performance?

Theorem (BharathMurthyICASSP2010)

$$d(g_m) \ge r\left(\delta - \frac{g_m}{lpha}\right), \ \ 0 \le g_m \le lpha,$$

•
$$\alpha \triangleq \frac{L_c - L_{B,\tau}}{L_c}$$

- $\delta = 2$ for s = 1 and $\delta = r + 1$ for s = r
- Assumes a genie-aided receiver

Fixed Power Training Power-Controlled Training

Are we better off?

• Conventional:

$$d(g_m) = r\left(r+1 - \frac{g_m(L_c - rL_{B,\tau})}{L_c}\right), \ 0 \le g_m \le \frac{L_c - rL_{B,\tau}}{L_c}$$

Proposed:

$$d(g_m) = r\left(r+1-\frac{g_m(L_c-L_{B,\tau})}{L_c}\right), \ \ 0 \leq g_m \leq \frac{L_c-L_{B,\tau}}{L_c}$$

Key take-home message #3

With training power = \overline{P} , the proposed training (beamforming) and power control (modified TCI) scheme significantly improves the DMT. Moreover, having larger *r* is always better!

Fixed Power Training Power-Controlled Training

Schematic Plot

Figure: SIMO system with r = 4 antennas, coherence time $L_c = 40$ symbols reverse training duration of $L_{B,\tau} = 5$ symbols per antenna.

크

Fixed Power Training Power-Controlled Training

Simulation Result

Fixed Power Training Power-Controlled Training

Simulation Result

æ

Chandra R. Murthy, ECE Dept. SPC Lab, IISc

Fixed Power Training Power-Controlled Training

• • • • • • • • • • •

Can we do better?

- We actually need $\mathcal{P}(\sigma)$ for data transmission, *not* σ !
 - Error amplification in computing tx power from $\hat{\sigma}$
- Can we directly estimate $\mathcal{P}(\sigma)$ at node A?
- Yes! Choose the training sequence sequence such that

$$y_{A, au} = \sqrt{\mathcal{P}(\sigma)} + noise$$

- Where P(σ) is the data power that achieves an infinite diversity order with perfect CSIR and CSIT
- Note: this necessitates power controlled training.

Fixed Power Training Power-Controlled Training

Can we do better?

- We actually need $\mathcal{P}(\sigma)$ for data transmission, *not* σ !
 - Error amplification in computing tx power from $\hat{\sigma}$
- Can we directly estimate $\mathcal{P}(\sigma)$ at node A?
- Yes! Choose the training sequence sequence such that

$$y_{A, au} = \sqrt{\mathcal{P}(\sigma)} + \textit{noise}$$

- Where P(σ) is the data power that achieves an infinite diversity order with perfect CSIR and CSIT
- Note: this necessitates power controlled training.

Fixed Power Training Power-Controlled Training

Image: A matrix and a matrix

Power Controlled Training

• Proposed training sequence from node B:

$$\mathbf{x}_{B, au} = rac{\sqrt{ar{P}}\sqrt{(r-1)(r-2)}}{\sigma^2}\mathbf{v}$$

• Note: $\mathbb{E}\{\mathbf{x}_{B,\tau}^{H}\mathbf{x}_{B,\tau}\} = \bar{P}$ because of the Rayleigh fading

Corresponding received training signal at node A

$$y_{A,\tau} = \underbrace{\frac{\sqrt{\overline{P}}\sqrt{(r-1)(r-2)}}{\sigma}}_{\text{Scaled version of }\sqrt{\overline{\mathcal{P}(\sigma)}}!} + w_{A,\tau}$$

Fixed Power Training Power-Controlled Training

Data Transmission from Node A

• Node A sends $g_c x_{A,d}$, where $x_{A,d} \sim C\mathcal{N}(0,1)$, and

$$g_c = \sqrt{rac{2ar{P}}{2(r-2)ar{P}+1}} \left| \Re\{y_{A, au}\} \right|$$

- Can show that $\mathbb{E}\{|g_c|^2\} = \bar{P}$
- Received data signal (after pre-multiplying by \mathbf{v}^H) is

$$\mathbf{y}_{B,d} \triangleq \sigma \mathbf{g}_{c} \mathbf{x}_{A,d} + \mathbf{v}^{H} \mathbf{w}_{B,d}$$

< □ > < □ > < □ > < □ >

DMT with Power Controlled Training

- We have proposed
 - A new power controlled RCT scheme
 - A new data power control scheme
 - The achievable rate is $\alpha \log(1 + \sigma^2 |g_c|^2)$
 - So, question: what is its DMT performance?

Theorem

An infinite diversity order is achievable when $0 \le g_m < \alpha$.

Proof: See [BharathMurthy, arXiv:1105.2375v1, 2011]
Note: Assumes a *genie aided* receiver, as before

Key take-home message #4

With power-controlled reverse channel training and direct estimation of the data tx power at *Node A*, can achieve a performance similar to an AWGN channel!

Fixed Power Training Power-Controlled Training

DMT with Power Controlled Training

- We have proposed
 - A new power controlled RCT scheme
 - A new data power control scheme
 - The achievable rate is $\alpha \log(1 + \sigma^2 |g_c|^2)$
 - So, question: what is its DMT performance?

Theorem

An infinite diversity order is achievable when $0 \le g_m < \alpha$.

Proof: See [BharathMurthy, arXiv:1105.2375v1, 2011]

• Note: Assumes a genie aided receiver, as before

Key take-home message #4

With power-controlled reverse channel training and direct estimation of the data tx power at *Node A*, can achieve a performance similar to an AWGN channel!

DMT with Power Controlled Training

- We have proposed
 - A new power controlled RCT scheme
 - A new data power control scheme
 - The achievable rate is $\alpha \log(1 + \sigma^2 |g_c|^2)$
 - So, question: what is its DMT performance?

Theorem

An infinite diversity order is achievable when $0 \le g_m < \alpha$.

Proof: See [BharathMurthy, arXiv:1105.2375v1, 2011]

Note: Assumes a genie aided receiver, as before

Key take-home message #4

With power-controlled reverse channel training and direct estimation of the data tx power at *Node A*, can achieve a performance similar to an AWGN channel!

Story So Far

Fixed Power Training Power-Controlled Training

- We assumed
 - Perfect CSIR
 - 2 Genie-aided receiver
- And showed
 - **1** Diversity order $r(r + 1 \frac{g_m}{\alpha})$ achievable with constant power training, $0 \le g_m < \alpha$
 - Infinite diversity order achievable with power-controlled training, 0 ≤ g_m < α</p>

Next Question

What can we say about the DMT if CSI is estimated at the receiver and the genie stopped helping us?

Story So Far

Fixed Power Training Power-Controlled Training

< ロ > < 同 > < 巨 >

- We assumed
 - Perfect CSIR
 - 2 Genie-aided receiver
- And showed
 - **1** Diversity order $r(r + 1 \frac{g_m}{\alpha})$ achievable with constant power training, $0 \le g_m < \alpha$
 - Infinite diversity order achievable with power-controlled training, 0 ≤ g_m < α</p>

Next Question

What can we say about the DMT if CSI is estimated at the receiver and the genie stopped helping us?

Three-Way Training Conclusions

2 Reverse Channel Training (RCT) with Perfect CSIR

3 RCT with Imperfect CSIR and CSIT

イロト イヨト イヨト イヨト

Chandra R. Murthy, ECE Dept. SPC Lab, IISc

Three-Way Training Conclusions

Four Phase Protocol

- Forward training: node B estimates h
- 2 Reverse training: node A estimates the singular value σ
- Solution Forward training, round 2: node A sends the power control $\mathcal{P}(\hat{\sigma})$ that will be used during the data transmission
 - Node B estimates the composite channel
- Oata transmission: node A transmits power controlled data

Three-Way Training Conclusions

Phase 1: Forward Training

Phase 1:Constant Power Training

Figure: Here, node B obtains an MMSE estimate of h.

Image: A matrix

크

Three-Way Training Conclusions

Phase 2: Reverse Training

Node A estimates the singular value as

$$\hat{\sigma} \triangleq \frac{\Re\{\mathbf{y}_{\mathbf{A},\tau}\}}{\sqrt{\bar{\mathbf{P}}L_{\mathbf{B},\tau}}} = \sigma \Re\{\mathbf{v}^{H}\hat{\mathbf{v}}\} + \bar{\mathbf{w}}_{\mathbf{A},\tau}$$

Note: fixed-power reverse training

Three-Way Training Conclusions

< □ > < □ > < □ > < □ >

Data Power Control Computation at Node A

• Using $\hat{\sigma}$, *Node A* computes $\mathcal{P}(\hat{\sigma})$ as

$$\mathcal{P}(\hat{\sigma}) \triangleq \begin{cases} \kappa_{\bar{P}} \Phi(\hat{\sigma}^2) & \hat{\sigma} > \frac{1}{\sqrt{\bar{P}}} \\ \bar{P}^I & \hat{\sigma} \le \frac{1}{\sqrt{\bar{P}}} \end{cases}$$

for some $0 \le l \le r$.

- Can show that there exists a $\kappa_{\bar{P}} \doteq \bar{P}^{-\frac{g_m}{\alpha}}$, where $\alpha \triangleq \frac{L_c L_{B,\tau} L_{A,\tau_1} L_{A,\tau_2}}{L_c}$, such that $\mathbb{E}\mathcal{P}(\hat{\sigma}) = 1$
- Problem: *Node B* does not know $\mathcal{P}(\hat{\sigma})!$
 - Solution: use a third round of training

Three-Way Training Conclusions

Phase 3: Forward Power-Controlled Training

Figure: Here, *node B* obtains an *MMSE estimate* of \mathbf{p}_c .

Received training signal

$$\mathbf{y}_{B,\tau_2} = \sqrt{\bar{P}L_{A,\tau_2}} \underbrace{\sqrt{\mathcal{P}(\hat{\sigma})\mathbf{h}}}_{\triangleq \mathbf{p}_c} + \mathbf{w}_{B,\tau_2},$$
Chandra R. Murthy, ECE Dept. SPC Lab, IISc

Three-Way Training Conclusions

Phase 4: Power-Controlled Data Transmission

• Node A sends the data symbol

$$\mathbf{x} = \sqrt{\bar{P}\mathcal{P}(\hat{\sigma})}\mathbf{x}_{\mathsf{A},\mathsf{d}}$$

Where $x_{A,d} \sim C\mathcal{N}(0,1)$

• The corresponding received signal is

$$\mathbf{y}_{B,d} = \sqrt{\bar{P}\mathcal{P}(\hat{\sigma})}\mathbf{h}x + \mathbf{w}_{B,d}$$

= $\sqrt{\bar{P}}\mathbf{\hat{p}}_{c}x_{A,d} + \underbrace{\sqrt{\bar{P}}\mathbf{\tilde{p}}_{c}x_{A,d} + \mathbf{w}_{B,d}}_{\text{effective noise}}$

< 3 >

Three-Way Training Conclusions

Capacity Lower Bound

 Since p̂_c is an MMSE estimate, using the worst case noise theorem³, we get a lower bound on the mutual information:

$$I(\mathbf{x}_{A,d};\mathbf{y}_{B,d}|\hat{\mathbf{p}}_c) \geq \alpha \log \left(1 + \frac{\bar{P}\|\hat{\mathbf{p}}_c\|_2^2}{\bar{P}\mathbb{E}[\|\tilde{\mathbf{p}}_c\|_2^2] + r}\right)$$

α ≜ L_c-L_{B,τ}-L_{A,τ1}-L_{A,τ2} accounts for total training overhead
 Note: genie-aided assumption is not required here!

³[HochwaldHassibi2003]

Chandra R. Murthy, ECE Dept.

SPC Lab, IISc

Three-Way Training Conclusions

Achievable Diversity Multiplexing Gain Tradeoff

Theorem

The achievable DMT is given by

$$d(g_m) = r\left(2 - rac{g_m}{lpha}
ight), \quad 0 \le g_m \le lpha$$

where
$$\alpha \triangleq \frac{L_c - L_{B,\tau} - L_{A,\tau_1} - L_{A,\tau_2}}{L_c}$$

Key take-home message #5

Even without the perfect CSIR, and even without the genie, can significantly improve the DMT using reverse channel training!

< □ > < □ > < □

Three-Way Training Conclusions

Proof Outline

• The outage probability can be upper bounded as

$$P_{out} \leq \Pr\left\{\alpha \log\left(1 + \frac{\bar{P} \|\hat{\mathbf{p}}_{c}\|_{2}^{2}}{\bar{P} \mathbb{E}[\|\tilde{\mathbf{p}}_{c}\|_{2}^{2}] + r}\right) < R_{\bar{P}}\right\}$$

where
$$R_{\bar{P}} \triangleq g_m \log \bar{P}$$
 is the target data rate
• Let $\bar{R}_{\bar{P}} \triangleq \frac{(\bar{P}\mathbb{E}[\|\|\bar{\mathbf{p}}_c\|\|_2^2] + r)(\exp\{R_{\bar{P}}/\alpha\} - 1)}{\bar{P}} \doteq \frac{1}{\bar{P}^{(1-g_m/\alpha)}}$. Then,
 $P_{out} \leq \Pr\left\{\|\|\bar{\mathbf{p}}_c\|_2^2 < \bar{R}_{\bar{P}}\right\}$
 $\leq \Pr\left\{\|\|\mathbf{p}_c\|_2 - \|\|\bar{\mathbf{p}}_c\|_2\| < \sqrt{\bar{R}_{\bar{P}}}\right\}$
 $\leq \Pr\left\{\|\|\bar{\mathbf{p}}_c\|_2 > \sqrt{\bar{R}_{\bar{P}}}\right\} + \Pr\left\{\|\mathbf{p}_c\|_2^2 < 4\bar{R}_{\bar{P}}\right\}$

Three-Way Training Conclusions

Proof Outline (continued)

Lemma (Property of MMSE Estimators)

 $\mathbb{E}\|\tilde{\boldsymbol{p}}_{c}\|_{2}^{2z} \doteq \tfrac{1}{\bar{P}^{z}} \text{ for every } z > 0.$

• Using the lemma with
$$z = r \frac{\alpha}{g_m} \left(2 - \frac{g_m}{\alpha}\right) > 0$$
, we have

$$\mathsf{Pr}\left\{\| ilde{\mathsf{p}}_{c}\|_{2}^{2}>ar{\mathsf{R}}_{ar{\mathsf{P}}}
ight\}\preceqrac{1}{ar{\mathsf{P}}^{r\left(2-rac{g_{m}}{lpha}
ight)}}, \ \ \mathsf{0}\leq g_{m}$$

Can show that the second term is also bounded as

$$\mathsf{Pr}\left\{\|\mathbf{p}_{c}\|_{2}^{2} > 4\bar{R}_{\bar{P}}\right\} \preceq \frac{1}{\bar{P}^{r\left(2-\frac{g_{m}}{\alpha}\right)}}, \ \ \mathsf{0} \leq g_{m} < \alpha$$

• Combining the two, we have

$$d(g_m) = -\frac{\log P_{out}}{\log \bar{P}} \ge r\left(2 - \frac{g_m}{\alpha}\right), \ \ 0 \le g_m < \alpha. \blacksquare$$

Three-Way Training Conclusions

Conclusions

- Even imperfect CSIT helps! Key ingredients:
 - Exploit CSI at the receiver in reverse channel training
 - Use power controlled training to convey only the CSI required for data transmission at node A
 - Tx does not require knowledge of the entire channel
 - Use better power control strategies at the transmitter
 - With imperfect CSIR, use a third round of training
- Advantages
 - Reduction in training overhead
 - Better channel estimate
 - Improvement in diversity-multiplexing gain tradeoff
- Topics studied but not presented today:
 - Training sequence design for a MIMO channel
 - Power controlled training in a spatial multiplexing system

References

Three-Way Training Conclusions

- B. N. Bharath and C. R. Murthy, "Reverse channel training for reciprocal MIMO systems with spatial multiplexing," *IEEE ICASSP* 2009
- B. N. Bharath and C. R. Murthy, "On the improvement of the diversity-multiplexing gain tradeoff in a training based TDD-SIMO system," IEEE ICASSP 2010
- Journal version submitted to the *IEEE Transactions on Wireless Communications* and available at arXiv:1105.2375v1

Three-Way Training Conclusions

Thank you!

æ

Chandra R. Murthy, ECE Dept. SPC Lab, IISc