
Minorization-Maximization Algorithms for Codebook

based Downlink Sum-Rate Maximization in TDD
Multiuser Large MIMO Broadcast Systems

Sai Subramanyam Thoota

SPC Lab, Department of ECE

Indian Institute of Science

August 5, 2017

(Sai Subramanyam Thoota, ECE, IISc) Minorization-Maximization Algorithms for Codebook based Downlink Sum-Rate Maximization in TDD MultiuserAugust 5, 2017 1 / 32



Table of contents

1 Motivation

2 Goal & Contributions

3 System Model & Problem Statement

4 Minorization-Maximization Principle

5 Proposed Algorithms

6 Simulation Results

7 Summary & Future Work

(Sai Subramanyam Thoota, ECE, IISc) Minorization-Maximization Algorithms for Codebook based Downlink Sum-Rate Maximization in TDD MultiuserAugust 5, 2017 2 / 32



Motivation

Design of downlink (DL) precoding and beamforming schemes for multiuser (MU)
multiple input multiple output (MIMO) systems with a large number of antennas at
the base station (BS) has attracted significant research interest.

High control overhead in the uplink (UL) and DL to convey the channel state
information (CSI) to the BS, and the precoding matrices to the user equipments
(UE), respectively.

CSI overhead can be avoided using reverse channel training (RCT) in time division
duplex (TDD) systems. Pilots transmited in the uplink (UL) by the UEs, which will
be used to estimate the DL channel estimates.

LTE/LTE-A uses codebook based beamforming, which uses a predetermined set of
precoding vectors to be chosen during DL transmission. The same scheme can be
adopted in the next generation wireless communication systems with a larger
codebook size.
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Goal & Contributions

Goal

Multiple data streams are simultaneously transmitted to all users, after precoding
each data stream with a beamforming vector selected from a predetermined
codebook.

Goal is to determine the selection of beamforming vectors and power allocation to
each user to maximize the achievable sum rate.

Contributions

The problem is non-convex and combinatorial in nature, which is reformulated to
facilitate the use of a minorization-maximization (MM) approach to solve it in a
computationally efficient manner.

Two iterative algorithms are proposed, which involve the use of the MM approach
in a nested manner, to obtain a convex objective function, which is solved in closed
form.

In the high SNR regime, lower complexity variants of the algorithms are proposed.
The performance of the proposed algorithms is benchmarked against existing
approaches.
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System Model

Scenario: Single cell MU-MIMO broadcast system with one BS and K users.

System Parameters:

Number of transmit antennas - Nt

Number of receive antennas - Nr

Size of the codebook - N
Beamforming vectors - vl ∈ C

Nt×1, l = 1, . . . ,N
Channel matrix of the k th user - Hk ∈ C

Nr×Nt

Codebook C = [v1, v2, . . . , vN ] ∈ C
Nt×N

Transmit signal:

x =
K
∑

j=1

N
∑

l=1

vl sj (l) (1)

Received signal of the k th user:

yk = Hkx+ wk = Hk

K
∑

j=1

Csj + wk , (2)

where wk ∈ C
Nr×1 is the complex additive white Gaussian noise of the k th UE with

distribution CN (0, σ2INr ), and sj = [sj (1), . . . , sj (N)]T .
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System Model

The rate achievable for the k th user is given by

Rk = log
∣

∣

∣
INr +V−1

k HkCΦkC
HHH

k

∣

∣

∣
, (3)

where

Vk = σ
2INr +

K
∑

j=1
j 6=k

HkCΦjC
HHH

k (4)

is the interference plus noise covariance matrix, and
Φk = diag ([Pk(1),Pk(2), ...,Pk (N)]) is the transmit signal covariance matrix of the
k th user.

The DL sum rate is given by

Rtot =
K
∑

k=1

log
∣

∣

∣
INr +V−1

k H̃kΦkH̃
H
k

∣

∣

∣
, (5)

where H̃k = HkC.
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Problem Statement

The objective is to maximize the sum rate Rtot given in (5) under a maximum total
power constraint. Mathematically, the problem statement is given by

maximize
Φ1,Φ2,...,ΦK

K
∑

k=1

log
∣

∣

∣
INr +V−1

k H̃kΦkH̃
H
k

∣

∣

∣
, (6)

s. t. Tr

(

K
∑

k=1

Φk

)

≤ Pmax

where Pmax is the maximum total transmit power allowed at the BS.

The optimization problem in (6) is nonconvex in Φ1, . . . ,ΦK and combinatorial in
nature, which cannot be solved in closed-form.

We propose two algorithms based on the MM principle, which is briefly explained in
the next slide.

(Sai Subramanyam Thoota, ECE, IISc) Minorization-Maximization Algorithms for Codebook based Downlink Sum-Rate Maximization in TDD MultiuserAugust 5, 2017 7 / 32



Minorization-Maximization Principle

MM principle proceeds by solving a simple convex optimization problem in place of
a complex non-convex optimization problem.

Surrogate convex function which bounds the objective function either from above
(for minimization) or below (for maximization) is computed.

A function g(x |x (m)) is said to minorize a real-valued function f (x) at x (m) if

g(x |x (m)) ≤ f (x),∀x ∈ C

g(x (m)|x (m)) = f (x (m))

The algorithm proceeds by maximizing the surrogate function g(x |x (m)) and finding
the next iterate x (m+1).

Since g(x |x (m)) ≤ f (x) ∀x , if the maximum of g(x |x (m)) is achieved at x (m+1), then
f (x (m+1)) ≥ g(x (m+1)|x (m)) ≥ g(x (m)|x (m)) = f (x (m)), i.e., the original objective
function either increases or remains unchanged.
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Proposed Algorithms

We propose two algorithms, which we refer to as the square root MM (SMM) and
inverse MM (IMM).

Both algorithms start by executing a preliminary minorization step, and then
proceed to solve the resulting optimization problem by two different approaches.

Preliminary step to find a surrogate function to lower bound the sum rate uses a
lemma discussed in the next slide.
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Preliminary Step

Lemma 1

For matrices Z, Y � 0, the non-convex function

f (Z,Y) = log
∣

∣

∣
Z−1Y

∣

∣

∣
(7)

can be lower bounded by

f (Z,Y) ≥ −
(

log
∣

∣

∣
Z(m)

∣

∣

∣
+ Tr

(

Z(m)−1
(

Z− Z(m)
))

+ log
∣

∣

∣
Y(m)−1

∣

∣

∣
+ Tr

(

Y(m)
(

Y−1 − Y(m)−1
)))

(8)

with equality at Z = Z(m) and Y = Y(m).
Proof:

f (Z,Y) = − log |Z|+ log |Y| . (9)

Here, Z and Y are positive semidefinite (p.s.d) matrices, and so the function f is convex
in Z and Y−1. Hence we can bound it from below using the first order Taylor series
expansion, resulting in the lower bound given by (8).
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Let Bk , σ2INr +
∑K

j=1 H̃kΦj H̃
H
k .

The rate of the k th user can be written as Rk = log
∣

∣V−1
k Bk

∣

∣. Applying Lemma 1 to
the sum rate objective function, we get the following surrogate optimization
problem for (6):

{Φ(m+1)
1 , . . . ,Φ

(m+1)
K } =

argmax
Φ1,...,ΦK

K
∑

k=1















−Tr









V
(m)
k

−1









σ
2INr +

K
∑

j=1
j 6=k

H̃kΦj H̃
H
k

















−Tr



B
(m)
k

[

σ
2INr +

K
∑

j=1

H̃kΦj H̃
H
k

]−1










, (10)

subject to Tr

(

K
∑

k=1

Φk

)

≤ Pmax,

where m is the iteration index.
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We define some notation before explaining the SMM and IMM algorithms. Let

Φ , diag (Φ1, . . . ,ΦK ) , (11)

Ψk ,

[

H̃k , . . . , H̃k

]

, k = 1, . . . ,K (12)

denote the augmented power allocation and the k th user’s channel matrices,
respectively. In (12), H̃k is repeated K times. Also, let

Q ,

K
∑

k=1

diag
(

H̃H
k V

−1
k H̃k , . . . , 0N , . . . , H̃

H
k V

−1
k H̃k

)

. (13)

In the above, the N×N all zero matrix 0N is in the k th block diagonal position of Q.

The first term in (10) can be written as Tr
(

Q(m)Φ
)

, where the superscript m

denotes the iteration index, and Q(m) is obtained by substituting V
(m)
k for Vk in (13).
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Square root MM (SMM) Algorithm

SMM proceeds by working with the square root of the power allocation matrix Φ.

Two stages of minorization to bound the objective function from below.

The second term in (10) can be written as

−
K
∑

k=1

Tr

(

F
(m)
k

(

σ
2INr +ΨkΦΨH

k

)−1

F
(m)
k

H
)

, (14)

where Fk denotes a matrix such that Bk = FH
k Fk

1.

The above cost function cannot be directly optimized due to the matrix inversion
involved. Hence, we minorize it using the following lemma.

1It can be computed, for example, via the Cholesky decomposition of Bk .
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Lemma 2

Let R denote a diagonal p.s.d. square matrix, and consider the function f (R) defined as

f (R) = −Tr

(

A
(

B+ CRCH
)−1

AH

)

, (15)

where A,B and C are matrices of appropriate dimensions, and B is positive definite,
ensuring that B+ CQCH is invertible. Then, for a given diagonal p.s.d. matrix R(m),
f (R) can be lower bounded by

f (R) ≥ g(R|R(m)) = −Tr(K̂) + Tr
((

Ŷ−1X̂HAB−1C+ CHB−HAH X̂Ŷ−1
)

R
1
2

−Ŷ−1X̂HX̂Ŷ−1R
1
2CHB−1CR

1
2

)

, (16)

where

X̂ , AB−1CR(m)
1
2 , Ŷ , I+ R(m)

1
2 CHB−1CR(m)

1
2 , (17)

K̂ , AB−1AH + Ŷ−1X̂HX̂− Ŷ−1X̂HX̂Ŷ−1Ŷ + Ŷ−1X̂HX̂Ŷ−1 + X̂Ŷ−1X̂H
. (18)

Also, g(R(m)|R(m)) = f (R(m)), i.e., the lower bound is tight at R(m).
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Proof of Lemma 2.
Using the Woodbury matrix inversion identity for the inverse term in the function f in
(15), we get

− Tr

(

A

(

B−1 −B−1CR
1
2

(

I+ R
1
2CHB−1CR

1
2

)−1

R
1
2CHB−1

)

AH

)

=− Tr
(

AB−1AH
)

+ Tr
(

XY−1XH
)

, (19)

where

X , AB−1CR
1
2 ,Y , I+ R

1
2CHB−1CR

1
2 . (20)

The function Tr
(

XY−1XH
)

is jointly convex in X and Y, and, can be minorized using a

first order Taylor series. The complex matrix differential of XY−1XH is computed as
follows:

Tr
(

d
(

XY−1XH
))

= Tr
(

Y−1XH
dX− Y−1XHXY−1

dY +XY−1
dXH

)

. (21)
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Proof of Lemma 2 contd.

Thus, around the point (X̂, Ŷ), (19) can be lower bounded as

− Tr(AB−1AH) + Tr
(

XY−1XH
)

≥ −Tr(AB−1AH) + Tr
(

Ŷ−1X̂H
(

X− X̂
)

− Ŷ−1X̂H X̂Ŷ−1
(

Y − Ŷ
)

+ X̂Ŷ−1
(

X− X̂
)H
)

= −Tr(K̂) + Tr

(

Ŷ−1X̂HAB−1CR
1
2 − Ŷ−1X̂H X̂Ŷ−1R

1
2 CHB−1CR

1
2 + X̂Ŷ−1

(

AB−1CR
1
2

)H
)

= −Tr(K̂) + Tr
(

Ŷ−1X̂HAB−1CR
1
2 + CHB−HAH X̂Ŷ−1R

1
2 − Ŷ−1X̂H X̂Ŷ−1R

1
2 CHB−1CR

1
2

)

,

(22)

where K̂ is as defined in Lemma 2. Grouping all the constant matrices in (22) together, we get

(16).
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Applying Lemma 2 to (14), we get

−Tr
(

W
(m)
1,k Φ

1
2 +W

(m)
2,k Φ

1
2 SkΦ

1
2

)

, (23)

where

W1,k , −

{

Y−1
k XH

k FkΨk +ΨH
k F

H
k XkY

−1
k

σ2

}

, (24)

W2,k , Y−1
k XH

k XkY
−1
k , (25)

and Sk ∈ C
KN×KN ,Xk ∈ C

Nr×KN and Yk ∈ C
KN×KN are defined as follows:

Sk ,
ΨH

k Ψk

σ2
,Xk ,

FKΨkΦ
1
2

σ2
,Yk , IKN +Φ

1
2 SkΦ

1
2 . (26)

Note that, W1,k and W2,k in (24) and (25) are negative and positive semidefinite
matrices, respectively.

The surrogate cost function is not yet amenable to a closed-form solution due to

the W
(m)
2,k Φ

1
2 SkΦ

1
2 term in (23).
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The following lemma is used to minorize the second term in (23).

Lemma 3

Suppose R is a p.s.d. diagonal matrix, and A and B are symmetric p.s.d. square
matrices. Then, the function

f (R) = −Tr (ARBR) (27)

can be lower bounded by

f (R) ≥− Tr
(

AR(m)BR(m) −
(

(B− λI)R(m)A+ AR(m) (B− λI)
)

R(m)
)

− Tr
((

(B− λI)R(m)A+ AR(m) (B− λI)
)

R
)

− λTr
(

AR2
)

, (28)

where λ is the largest eigenvalue of B. Further, we have equality in (28) at R = R(m).

(Sai Subramanyam Thoota, ECE, IISc) Minorization-Maximization Algorithms for Codebook based Downlink Sum-Rate Maximization in TDD MultiuserAugust 5, 2017 18 / 32



Proof.
We lower bound the function f (R) using λ, the largest eigenvalue of the matrix B, as
follows:

f (R) = −Tr
(

AR(B− λI)R+ λAR2
)

= −Tr
(

ARCR+ λAR2
)

, (29)

where C , (B− λI). The complex matrix differential of the first term in (29) is

Tr (d(ARCR)) = Tr (CRA(dR) + ARC(dR)) . (30)

Hence, around the previous iterate R(m), a lower bound on f can be written as

f (R) ≥− Tr
(

AR(m)BR(m)
)

− Tr
((

CR(m)A+ AR(m)C
)(

R− R(m)
))

− λTr
(

AR2
)

.

(31)

Grouping the constant terms in (31) together and substituting for C, we get (28).
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Applying Lemma 3 to (23), we get the final lower bound for (14) as follows:

−
K
∑

k=1

Tr
(

W
(m)
1,k Φ

1
2 +W

(m)
2,k Φ

1
2 SkΦ

1
2

)

≥ −Tr
(

W
(m)
A Φ

1
2 +W

(m)
B Φ

)

, (32)

where

WA ,

K
∑

k=1

{

W1,k + (Sk − λmax (Sk) IKN)Φ
1
2W2,k

}

, (33)

WB ,

K
∑

k=1

{λmax (Sk)W2,k} , (34)

and λmax(Sk) is the largest eigenvalue of the matrix Sk .

(Sai Subramanyam Thoota, ECE, IISc) Minorization-Maximization Algorithms for Codebook based Downlink Sum-Rate Maximization in TDD MultiuserAugust 5, 2017 20 / 32



Combining (32) with Tr
(

Q(m)Φ
)

(above (13)), the optimization problem becomes

{Φ(m+1)} =argmax
Φ

{

−Tr
(

Q(m)Φ+W
(m)
A Φ

1
2 +W

(m)
B Φ

)}

(35)

subject to Tr (Φ) ≤ Pmax.

The Lagrangian for (35) is given by

KN
∑

i=1

(

[Q(m)](i,i)P(i) + [W
(m)
A ](i,i)P(i)

1
2 + [W

(m)
B ](i,i)P(i)

)

+ η

(

KN
∑

i=1

P(i) − Pmax

)

,

(36)

where P(i), i = 1, 2, . . . ,KN denotes the diagonal entries of the matrix Φ.

By differentiation w.r.t P(i) in (36), we obtain the closed form solution

P(i) =









[

W
(m)
A

]

(i,i)

2

(

[

W
(m)
B

]

(i,i)
+ [Q(m)](i,i) + η

)









2

, (37)

where η is chosen to satisfy the constraint
∑KN

i=1 P(i) = Pmax.
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Inverse MM (IMM) Algorithm

Alternative bounding approach which leads to a different MM procedure for sum
rate maximization.

For convenience, we define the augmented covariance matrix Φ̃, the augmented
channel matrix Ψ̃k and the matrix Ξk as follows:

Φ̃ , diag
(

Φ1, . . . ,ΦK , σ
2INr

)

∈ R
(KN+Nr )×(KN+Nr ), (38)

Ψ̃k ,

[

H̃k , . . . , H̃k , INr

]

,∈ C
Nr×(KN+Nr ), (39)

Ξk , Ψ̃kΦ̃Ψ̃
H

k ,∈ C
Nr×Nr . (40)

In (39), the matrix H̃k is repeated K times. We can rewrite the term inside the

square brackets in (10) as B
(m)
k Ξ−1

k .

Note that B
(m)
k is a p.s.d. matrix.
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In order to develop the IMM procedure, we start with the following proposition.

Proposition 1

Let R be an m × n matrix and A be an m ×m p.s.d. matrix. We can upper bound the

function f (U) , Tr
(

A
(

RURH
)−1
)

as

f (U) ≤ Tr

(

A
(

RU(m)RH
)−1

RU(m)U−1U(m)RH
(

RU(m)RH
)−1

)

, (41)

with equality at U = U(m).

Applying proposition 1 to Tr
(

B
(m)
k Ξ−1

k

)

results in the bound given below.

K
∑

k=1

Tr
(

B
(m)
k Ξ−1

k

)

≤
K
∑

k=1

Tr
(

B
(m)
k Ξ

(m)
k

−1
Ψ̃kΦ̃

(m)
Φ̃

−1
Φ̃

(m)
Ψ̃

H

k Ξ
(m)
k

−1
)

= Tr

(

K
∑

k=1

Φ̃
(m)

Ψ̃
H

k Ξ
(m)
k

−1
Ψ̃kΦ̃

(m)
Φ̃

−1

)

, (42)
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Let Z ,
∑K

k=1 Φ̃Ψ̃
H

k Ξk
−1Ψ̃kΦ̃. Substituting Tr

(

Q(m)Φ
)

(above (13)) and (42)

into (6), we get the following surrogate optimization problem:

Φ(m+1) =argmax
Φ�0

{

−Tr
(

Q(m)Φ+ Z(m)Φ̃
−1
)}

(43)

subject toTr (Φ) ≤ Pmax,

where m is the iteration index. The above cost function is quadratic in Φ.

The Lagrangian is given by

KN
∑

i=1

(

[

Q(m)
]

(i,i)
P(i) +

[

Z(m)
]

(i,i)

1

P(i)

)

+ η

(

KN
∑

i=1

P(i)− Pmax

)

. (44)

The solution to the surrogate problem is

P(i) =







[

Z(m)
]

(i,i)

[Q(m)](i,i) + η







1
2

, ∀i = 1, 2, . . . ,KN. (45)
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Simulation Results
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Figure: CCDF comparison between SMM and IMM for SNR = 0 dB, Nt = 16 and
Pmax = 40 dBm.
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Figure: Sum rate vs. Codebook size (in bits), Nt = 16, Pmax = 40 dBm.
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Summary & Future Work

Summary

Proposed two algorithms, named square root MM (SMM) and inverse MM (IMM),
to solve the problem of codebook based DL sum rate maximization in a TDD
MU-MIMO broadcast system.

Algorithms are based on nested application of the MM procedure, and the novelty
of the algorithms lies in the choice of the surrogate functions used to bound the
objective function.

Proved the global optimality of the solutions to the surrogate optimization problems
of both the SMM and IMM algorithms, and benchmarked the performance with
state of the art algorithms.

Future Work

Design of sum rate optimal codebooks, and to investigate the sum rate
performance of hybrid beamforming in massive MIMO and mmwave cellular
communication systems.
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