Monika Bansal Advisor: Dr. Chandra R Murthy

Department of ECE, IISc

January 16, 2016

Overview

1 PAC bound for Group Testing

- Group Testing Framework
- PAC Learning Model
- Our Contribution

2 SSR for OFDM channel estimation: Implementation in SDR

- Sparsity in Channel
- SBL Framework
- OFDM Chain in GNU Radio
- Our Contribution

Group Testing Framework PAC Learning Model Our Contribution

Group Testing

A set of *n* items with *k* defective items (k << n).

- Group test: A group of items is tested in a group test
 - Test outcome 1 indicates presence of defective item(s)
 - Outcome 0 indicates all items are non-defective in the test

Main issues:

- Sample Complexity
- Correctness of solution
- Pooling Design

Group Testing Framework PAC Learning Model Our Contribution

Group Testing Model

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

 $= \bigvee_{j:x_j=1} \mathbf{a}_{c_j}$

 $\mathbf{y} \in \{0,1\}^M$ is the binary test outcome vector $\mathbf{a}_{c_j} \in \{0,1\}^M$ is the j^{th} column of \mathbf{A} $\mathbf{a}_{r_i} \in \{0,1\}^n$ is the i^{th} row of \mathbf{A} $\mathbf{A}(i,j) \sim \mathcal{B}(p)$ i.i.d. $\mathbf{x} \in \{0,1\}^n$ is test item vector

→ □ → → □ →

Group Testing Framework PAC Learning Model Our Contribution

Learning Problem

Learn unknown target function $f(\cdot) \in C$

Available items to the learner:

- Random examples: a_i
- Corresponding label: *y_i*

 $\begin{aligned} \mathbf{a}_i &\in \{0,1\}^n\\ y_i &= f(\mathbf{a}_i) \in \{0,1\}\\ f: \{0,1\}^n \to \{0,1\} \text{ is some boolean function} \end{aligned}$

How many examples do we need to output an hypothesis f^* s.t. maximum error is ϵ with confidence $1 - \delta$?

A B + A B +

Group Testing Framework PAC Learning Model Our Contribution

PAC Learning Model

• A learning algorithm is said to be PAC-learn C with approximation parameter ϵ and confidence parameter δ if \forall distributions D and all target functions $f \in C$, the algorithm draws M samples, runs for time at most t and outputs a function f^* s.t.

$$Pr(e(f^*, f) > \epsilon) \le \delta$$
$$e(f^*, f) = Pr_{\mathbf{a} \sim \mathcal{D}}(f^*(\mathbf{a}) \neq f(\mathbf{a}))$$

With prob. $1 - \delta$ the output hypothesis f^* will make at most ϵ error.

Group Testing Framework PAC Learning Model Our Contribution

Group testing as a learning problem

	Group testing	Learning model
Target function	x	$f(\cdot)$
Random example	a _{ri}	ai
Label	y (<i>i</i>)	Уі
Distribution	$\mathcal{B}(p)$	\mathcal{D}
Output hypothesis	Ŷ	f^*

Goal: Come up with the bound on the no. of group tests (M) using PAC learning framework.

Group Testing Framework PAC Learning Model Our Contribution

Column Matching (CoMa) Algorithm¹

- jth item is declared to be defective if: All the locations i where it has ones in the jth column of **A** also corresponds to ones in the result vector y_i.
- Error event occurs: When the non-defective item is declared as the defective item. This happened because the non-defective item was hidden.

¹Non-adaptive Group Testing: Explicit Bounds and Novel-Algorithms:

Group Testing Framework PAC Learning Model Our Contribution

PAC analysis for CoMa Algorithm

$$e(f^*, f) = Pr_{\mathbf{a} \sim \mathcal{D}}(f^*(\mathbf{a}) \neq f(\mathbf{a}))$$
$$= (1 - p)^k (1 - (1 - p)^{K(M)})$$
$$\text{For } \epsilon \text{ error,} \quad K_{\epsilon} = \left\lceil \frac{ln \left(1 - \frac{\epsilon}{(1 - p)^k}\right)}{ln(1 - p)} \right\rceil$$
(1)

is the **maximum** no. of unidentified (hidden) non-defective items allowed.

Group Testing Framework PAC Learning Model Our Contribution

Group Testing Framework PAC Learning Model Our Contribution

$$Pr(e(f^*, f) > \epsilon) \le \delta$$

$$Pr(K(M) > K_{\epsilon}) \le \delta$$

$$Pr(K(M) \le K_{\epsilon}) \ge 1 - \delta$$
(2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

where, K(M) is the no. of hidden non-defective items after M tests.

Group Testing Framework PAC Learning Model Our Contribution

Probability for exactly one item to be remain hidden

Step 1:

 $P_{i} = \Pr(i^{th} \text{ item is hidden in a test})$ $= \Pr(i^{th} \text{ item participates}) \times \Pr(\text{atleast one of the defective})$ $\text{items also participates}) + \Pr(i^{th} \text{ item does not participate})$ $= p(1-p)^{k} + (1-p)$ (3)

Step 2:

 $Ph_1(M) = \Pr(i^{th} \text{ item remains hidden after } M \text{ tests})$ = $\Pr(i^{th} \text{ item remains hidden in all } M \text{ tests})$ (4) = $(P_i)^M = (1 - p(1 - p)^k)^M$

Group Testing Framework PAC Learning Model Our Contribution

Probability for exactly one item to be remain hidden

Step 3:

$$P_{1}(M) = \Pr(\text{one item remains hidden after } M \text{ tests})$$
$$= \binom{n-k}{1} Ph_{1}(M) (1 - Ph_{1}(M))^{n-k-1}$$
(5)

- 4 同 6 4 日 6 4 日 6

Group Testing Framework PAC Learning Model Our Contribution

Probability for exactly two items to be remain hidden

Step 1:

$$P_{ij} = \Pr(i^{th} \text{ and } j^{th} \text{ items are hidden})$$

= $p^2 \left(1 - (1 - p)^k\right) + 2p(1 - p) \left(1 - (1 - p)^k\right) + (1 - p)^2$
= $1 - \left(1 - (1 - p)^2\right) (1 - p)^k$
(6)

Step 2:

ł

$$Ph_2(M) = \Pr(i^{th} \text{ and } j^{th} \text{ items remain hidden after } M \text{ tests})$$

= $(P_{ij})^M = \left(1 - \left(1 - (1 - p)^2\right)(1 - p)^k\right)^M$ (7)

< 同 ▶

∃ >

Group Testing Framework PAC Learning Model Our Contribution

Probability for exactly two items to be remain hidden

Step 3:

 $P_{2}(M) = \Pr(\text{two items remain hidden after } M \text{ tests})$ $= \binom{\binom{n-k}{2}}{1} Ph_{2}(M) (1 - Ph_{2}(M))^{\binom{n-k}{2} - 1}$ $= \binom{n-k}{2} Ph_{2}(M) (1 - Ph_{2}(M))^{\binom{n-k}{2} - 1}$ (8)

Probability for exactly q items to be remain hidden

$$P_{q}(M) = {\binom{n-k}{q}} Ph_{q}(M) \left(1 - Ph_{q}(M)\right)^{\binom{n-k}{q}-1} \text{ and }$$

$$Ph_{q}(M) = \left(1 - (1 - (1 - p)^{q})(1 - p)^{k}\right)^{M}$$
(9)

・ロト ・聞 ト ・ ヨト ・ ヨト

Group Testing Framework PAC Learning Model Our Contribution

Lower Bound

$$Pr(K(M) \le K_{\epsilon}) = \sum_{q=0}^{K_{\epsilon}} P_q(M)$$

= $(1 - Ph_1(M))^{n-k} + (n-k)Ph_1(M)(1 - Ph_1(M))^{(n-k)-1}$
+ $\dots + {\binom{n-k}{K_{\epsilon}}}Ph_{K_{\epsilon}}(M)(1 - Ph_{K_{\epsilon}}(M))^{\binom{n-k}{K_{\epsilon}}-1}$
 $\ge (1 - Ph_1(M))^{n-k} + (n-k)Ph_2(M)(1 - Ph_2(M))^{(n-k)-1}$

æ

Group Testing Framework PAC Learning Model Our Contribution

Bound on the Number of Tests (M)

$$Pr(K(M) \le K_{\epsilon}) \ge 1 - \delta$$

$$(1 - Ph_{1}(M))^{n-k} + (n-k)Ph_{1}(M)(1 - Ph_{1}(M))^{(n-k)-1} \ge 1 - \delta$$

$$(1 - Ph_{1}(M))^{n-k-1} \ge 1 - \delta$$

$$M \ge \frac{ln\left(1 - (1 - \delta)^{\frac{1}{n-k-1}}\right)}{ln(1 - p(1 - p)^{k})}$$
(10)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Group Testing Framework PAC Learning Model Our Contribution

Further Simplification

By using the inequality $(1-\delta)^{\frac{1}{n-k-1}} \leq (1-\frac{1}{n-k-1}\delta)$ in eq (10).

$$M \ge \frac{\ln\left(\frac{n-k-1}{\delta}\right)}{\ln\left(\frac{1}{1-\rho(1-\rho)^k}\right)} \tag{11}$$

- 4 同 6 4 日 6 4 日 6

Group Testing Framework PAC Learning Model Our Contribution

Comparison with the Group testing Literature Bound

Bounding the denominator,

$$ln\left((1-p(1-p)^{k})^{-1}\right) \ge ln\left(1+p(1-p)^{k}\right) \\ \ge p(1-p)^{k}$$
(12)

If $p = \frac{1}{k}$, then by applying the inequality $(1 - \frac{1}{k})^k \geq \frac{1}{exp(1)}$ we get,

$$M \geq exp(1)k\left[ln(n-k-1)+ln(rac{1}{\delta})
ight]$$

Group Testing literature bound:

$$M \geq 2(1 + \Delta)exp(1)k imes ln(n)$$

for probability of error at most $n^{-\Delta}$.

Group Testing Framework PAC Learning Model Our Contribution

- Group testing as a learning problem
- PAC analysis for the CoMa algorithm
- Bound on number of tests (M)

< 17 ▶

∃ >

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

Wireless Communication Channel

Sparse in lag domain

Monika Bansal SSR for OFDM channel estimation: Implementation in SDR

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

OFDM Channel Model

 $\mathbf{y} = \mathbf{X}\mathbf{F}\mathbf{h} + \mathbf{v}$

 $\mathbf{y} \in \mathbb{C}^{N \times 1}$ is the received vector after FFT $\mathbf{X} \in \mathbb{C}^{N \times N}$ contains data symbol and pilot symbols along the diagonal $\mathbf{F} \in \mathbb{C}^{N \times L} (N > L)$ contains the first L columns of $N \times N$ DFT matrix $\mathbf{v} \in \mathbb{C}^{N \times 1} \sim \mathcal{CN}(0, \sigma^2 \mathbf{I})$ is the AWGN noise $\mathbf{h} \in \mathbb{C}^{L \times 1}$ is the time domain channel response

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

Channel Model using *Pilots* only:

$$\begin{aligned} \mathbf{y}_{P} &= \mathbf{X}_{p} \mathbf{F}_{p} \mathbf{h} + \mathbf{v}_{p}, \quad (P < L) \\ &= \phi_{p} \mathbf{h} + \mathbf{v}_{p} \end{aligned}$$

Monika Bansal SSR for OFDM channel estimation: Implementation in SDR

▲ □ ▶ ▲ □ ▶ ▲

э

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

SBL Framework

$$\mathbf{h} \sim \mathcal{CN}(0, \mathbf{\Gamma}), \quad \mathbf{\Gamma} = \operatorname{diag}(\gamma(1), ..., \gamma(L))$$

ML estimation problem:

$$\begin{split} \hat{\mathbf{h}} &= \arg \max_{\mathbf{h}, \gamma \in \mathbb{R}_{+}^{L \times 1}} p(\mathbf{y}_{\rho} | \mathbf{h}; \gamma) p(\mathbf{h}; \gamma) \\ &= \arg \min_{\mathbf{h}, \gamma \in \mathbb{R}_{+}^{L \times 1}} \frac{\|\mathbf{y}_{\rho} - \mathbf{X}_{\rho} \mathbf{F}_{\rho} \mathbf{h}\|_{2}^{2}}{\sigma^{2}} + \log |\mathbf{\Gamma}| + \mathbf{h}^{H} \mathbf{\Gamma}^{-1} \mathbf{h} \end{split}$$

Instead of estimating ${\bf h}$ directly, we estimate γ first

$$\hat{\gamma}_{\textit{ML}} = \underset{\gamma \in \mathbb{R}_{+}^{L \times 1}}{\arg \max} p(\mathbf{y}_{\textit{p}}; \gamma)$$

/□ ▶ < 글 ▶ < 글

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

EM algorithm

$$p(\mathbf{h};\gamma) = \prod_{i=1}^{L} (\pi\gamma(i))^{-1} exp\left(-\frac{|h(i)|^2}{\gamma(i)}\right)$$

E-step: $Q\left(\gamma|\gamma^{(r)}\right) = \mathbb{E}_{\mathbf{h}|\mathbf{y}_p;\gamma^{(r)}}\left[\log p(\mathbf{y}_p,\mathbf{h};\gamma)\right]$
M-step: $\gamma^{(r+1)} = \underset{\gamma \in \mathbb{R}_+^{L \times 1}}{\arg \max} Q\left(\gamma|\gamma^{(r)}\right)$
 $\gamma^{(r+1)}(i) = \Sigma(i,i) + |\mu(i)|^2$

Probability densities:

$$p\left(\mathbf{h}|\mathbf{y}_{p};\gamma^{(r)}\right) = \mathcal{CN}(\mu,\Sigma)$$

$$\Sigma = \Gamma^{(r)} - \Gamma^{(r)}\phi_{p}^{H}(\sigma^{2}\mathbf{I}_{P_{b}} + \phi_{p}\Gamma^{(r)}\phi_{p}^{H})^{-1}\phi_{p}\Gamma^{(r)}, \quad \mu = \sigma^{-2}\Sigma\phi_{p}^{H}\mathbf{y}_{p}$$

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

Algorithm 1 SBL for estimating time domain channel taps

Input: $\mathbf{y}_{p}, \phi_{p}, r_{max}$ and ϵ . Initialize $\Gamma^{(0)} = \mathbf{I}_{L}$, Set difference = 1, r = 0while (difference> ϵ and $r < r_{max}$) E-step: $\mu = \sigma^{-2} \Sigma \phi_{p}^{H} \mathbf{y}_{p}$ $\Sigma = \Gamma^{(r)} - \Gamma^{(r)} \phi_{p}^{H} (\sigma^{2} \mathbf{I}_{P_{b}} + \phi_{p} \Gamma^{(r)} \phi_{p}^{H})^{-1} \phi_{p} \Gamma^{(r)}$ M-step: $\gamma^{(r+1)}(i) = \Sigma(i, i) + |\mu|^{2}$ for i = 1, 2, ..., Ldifference $\triangleq ||\gamma^{(r+1)} - \gamma^{(r)}||_{2}^{2}, r \leftarrow r + 1$ end output: $\mu, \gamma^{(r)}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

Introduction to GNU Radio

- A software development tool kit with signal processing blocks written in C++/Python.
- GRC (GNU Radio Companion) is the user interface for GNU Radio.
- Can be used with external RF hardware (such as USRP N210) to create Software Defined Radio(SDR).

・ 同 ト ・ ヨ ト ・ ヨ ト

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

OFDM Transmitter in GNU Radio

Monika Bansal SSR for OFDM channel estimation: Implementation in SDR

(日) (同) (三) (三)

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

OFDM Receiver in GNU Radio

Monika Bansal SSR for OFDM channel estimation: Implementation in SDR

(日) (同) (三) (三)

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio Our Contribution

OFDM Receiver in GNU Radio

Monika Bansal SSR for OFDM channel estimation: Implementation in SDR

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio **Our Contribution**

Our Contribution

Implementation of SBL algorithm in place of existing Channel Estimation block.

- ▲ - □

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio **Our Contribution**

Comparing Plot

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio **Our Contribution**

Summary

- Implemented SBL based channel estimation algorithm in GNU radio.
- Simulation curves verify the advantages of SSR based algorithm.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sparsity in Channel SBL Framework OFDM Chain in GNU Radio **Our Contribution**

Future Work

- Implementation of joint channel estimation and data detection SBL and other SSR based algorithms in simulation set up.
- Real time performance evaluation of SSR based channel estimation algorithms using RF hardware such as USRP N210.
- Analyse other group testing algorithms in PAC learning model and give bounds on the no. of tests.

くほし くほし くほし