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Group Testing

A set of n items with k defective items (k<<n).

m Group test: A group of items is tested in a group test

m Test outcome 1 indicates presence of defective item(s)
m Outcome 0 indicates all items are non-defective in the test

m Main issues:

m Sample Complexity
m Correctness of solution
m Pooling Design
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Group Testing Model

y = Ax

= \/aCf
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y € {0,1}M is the binary test outcome vector
a, € {0, 131M is the j™ column of A

a,, € {0,1}" is the i*" row of A

A(i,j) ~ B(p) i.i.d.

x € {0,1}" is test item vector
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Learning Problem

Learn unknown target function f(-) € C

Available items to the learner:
m Random examples: a;

m Corresponding label: y;

aj € {07 1}n
yi = f(ai) € {0,1}
f:{0,1}" — {0,1} is some boolean function

How many examples do we need to output an hypothesis f* s.t.
maximum error is € with confidence 1 — §7
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PAC Learning Model

m A learning algorithm is said to be PAC-learn C with
approximation parameter € and confidence parameter § if V
distributions D and all target functions f € C, the algorithm
draws M samples, runs for time at most t and outputs a
function f* s.t.

Pr(e(f*,f)>¢€)<$¢
e(f*,f) = Prap (f*(a) # f(a))

With prob. 1 — ¢ the output hypothesis f* will make at most €
error.
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Group testing as a learning problem

Group testing Learning model
Target function X ()
Random example a, a;
Label y(i) Yi
Distribution B(p) D
Output hypothesis X f*

Goal: Come up with the bound on the no. of group tests (M)
using PAC learning framework.
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Column Matching (CoMa) Algorithm?

=
o
-

(o]
[

m j item is declared to be defective if: All the locations i
where it has ones in the j column of A also corresponds to
ones in the result vector y;.

m Error event occurs: When the non-defective item is declared
as the defective item. This happened because the
non-defective item was hidden.

!Non-adaptive Group Testing: Explicit Bounds and Novel:Algorithms
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PAC analysis for CoMa Algorithm

y

olzlo
1] = |olojo
o] 01

e(f*,f) = Prap(f*

In (1 — )
For € error, K=|—F-—-"-%27
In(1—p)

is the maximum no. of unidentified (hidden) non-defective items
allowed.
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No. of hidden non-defective items(K ) vs generalization error(e)
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PAC Bound

Pr(e(f*,f)>¢€) <$§
Pr(K(M) > K) <6 (2)
PrK(M) < K)>1—6

where, K(M) is the no. of hidden non-defective items after M
tests.
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Probability for exactly one item to be remain hidden

Step 1:
P; = Pr(i*" item is hidden in a test)
= Pr(i* item participates)x Pr(atleast one of the defective
items also participates) + Pr(i™" item does not participate)
=p(1—p)+(1-p)
(3)
Step 2:
Phy (M) = Pr(i*" item remains hidden after M tests)
= Pr(i*" item remains hidden in all M tests)  (4)
= (P)" = (1 - p(1 — p)})"
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Probability for exactly one item to be remain hidden

Step 3:
P1(M) = Pr(one item remains hidden after M tests)

- (” I k) Phy(M) (1 — Phy(M))"<1

(5)
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Probability for exactly two items to be remain hidden

Step 1:

P; = Pr(i*" and j* items are hidden)
=p° (1—(1—p)k) +2p(1—p) (1—(1—/0)") +(1-p)°

—1-(1-(1-pP) (1 p)*
(6)

Step 2:
Phy(M) = Pr(i*" and j® items remain hidden after M tests)

M
= (P = (1= (1= -p?) (1-p)")

(7)
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Probability for exactly two items to be remain hidden

Step 3:

P>(M) = Pr(two items remain hidden after M tests)

n—k —k
- <( 2 )>Ph2(l\/l)(1— Phy(M))("2)~ (8)

_ (” ) k) Pho(M) (1 — Phy(M))("2) 1

Probability for exactly g items to be remain hidden

Pq(M) = <" ; k> Pha(M) (1 — Pho(M))("s )1 and

y ©)
Pho(M) = (1= (1= (1= p)?) (1 - p)¥)
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Lower Bound

= (1= Phy(M))"™* + (n — k)Phy(M) (1 — Phy(M)){"1
.t (n y k) Phy (M) (1 — Phy (M) (k)1

> (1= Phy(M))"™* + (n — k)Phy(M) (1 — Phy(M))("=R71
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Bound on the Number of Tests (M)

Pr(K(M) < Ke) > 1-6
(1= Ph (M) + (n — k)Phy(M) (1 = Phy(M))" 071 > 1 -5
(1 — Phy(M))"—k1 > 1-6

In (1 (- 5)ﬁ)

In(1—p(1-p))
(10)

M
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Further Simplification

By using the inequality (1 — 9) T <(1- ﬁé) in eq (10).

) 1)
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Comparison with the Group testing Literature Bound

Bounding the denominator,
n (1= p(1=p))1) = tn (1+p(1 - p)")
> p(1 - p)*
If p= %, then by applying the i lity (1— )% > L
p = i then by applying the inequality (1 k) > we get,

= exp(1)
|

(12)

M > exp(1)k [In(n —k—1)+ /n(%)}

Group Testing literature bound:

M > 2(1+ A)exp(1)k x In(n)
for probability of error at most n=2.
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Summary

m Group testing as a learning problem
m PAC analysis for the CoMa algorithm

m Bound on number of tests (M)
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SSR for OFDM channel estimation: Implementation in SDR

Amplitude

Time

Sparse in lag domain
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OFDM Channel Model

[ Pilot symbol  [2] Data symbol

y=XFh+v

y € CV¥1 is the received vector after FFT

X € CV*N contains data symbol and pilot symbols along the diagonal
F € CV*L(N > L) contains the first L columns of N x N DFT matrix
v e CV*1 ~ CN(0,0°T) is the AWGN noise

h € CH*! is the time domain channel response
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Channel Model using Pilots only:

[ Pitot symbol
Data symbol

yp = XpFph+v,, (P <L)
= ¢ph + v,
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SBL Framework

h~CN(0,T), T =diag(y(1),....,v(L))

ML estimation problem:

A

h = arg max p(y,|h; v)p(h;7)
h,weRiXI

— X,Fph|3
= arg minw + log|l| + h"r—1h
o

Instead of estimating h directly, we estimate -y first

AmL = arg max p(y,; )
’YERI;XI
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EM algorithm

L N
plhi ) = [Tmr() exp (1200

P (1)

E-step: Q (vlfy(r)) = Epyy, i1 [10g p(¥p, hi )]

M-step: 7" = arg max Q (v]7))
yeRLX?

AEDGY = (0, 7) + u(i)?
Probability densities:
p (h\yp: 7(’)) =CN(u,X)
T =T -1l (o?1p, + ¢l V) 1,1 = 025 lly,
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Algorithm 1 SBL for estimating time domain channel taps
Input: y,, ¢p, rmax and e.

Initialize N® =1, Set difference = 1, r =0

while (difference> € and r < rpax)

E-step: 11 =0 ?Lolly,

¥ =) — TOGH (521p, + ¢l (pH) " 9,7 (")

M-step: D) = (i, i)+ |pf> for i =1,2,...,L
difference £ || 1) — 4|3, r + r+1 end

output: 4, fy(’)
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Introduction to GNU Radio

m A software development tool kit with signal processing
blocks written in C++/Python.

m GRC (GNU Radio Companion) is the user interface for GNU
Radio.

m Can be used with external RF hardware (such as USRP N210)
to create Software Defined Radio(SDR).
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OFDM Transmitter in GNU Radio

SSR for OFDM channel estimation: Implementation in SDR

Random Source
Minimum: 0
Maximum: 255
Num Samples: 76.8k
Repeat: No

Repack Bits Chunks to Symbols

[l Bits perinput byte: 5 [l——pwJ| Symbol Table:

Bits per output byte: 2 Dimension: 1

Stream to Tagged Stream
Packet Length: 95
Length Tag Key: packet len

OFDM Carrier Allocator
FFT length: 64

Occupled Carriers: [-..., 26]
Pilot Carriers: (-2... 7, 21)
Pilot Symbols: (1,1, 1,-1)
Sync Words: [0.0,... 0, 0, 0]
Length tag key: packet len

Monika Bansal

FFT
FFT Size: 64
Forward/Reverse: Reverse
Window:
Shift: Yes
Num. Threads: 1

SSR for OFDM channel estimatio

OFDM Cyclic Prefixer
FFT Length: 64

v

Virtual Source Multiply Const Tag Gate Delay
Stream ID: b4 tag Constant: 125m Propagate tags: Delay: 3

CP Length: 16
Length Tag Key: packet_len

SDR

Implementation
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OFDM Receiver in GNU Radio

Channel Model
Noise Voltage: 0 Keep M in N FFT Size: 64
Frequency Offset: 0 M: 64 Forward/Reverse: Forward
—— ]| Epsiton: 1 L EPS Window: )
T initial offsct: 16 e
Block Tag Propagation: Yes o Thren

OFDM Frame Equalizer
Stream to Tagged Stream :F':': :"::r;s':':'::r‘;'l' FFT length: 64
Source 1 Vector Length: 64 . s,mn- ”'mw 2 ””Efwwﬂ [ CPlength: 16
Stream ID: b4_est Packet Length: 10 L ":mbe'r:”ﬂtﬁ ;SLb;h_ 5 P8 equalizer: <gnura..e3a9f0> >
Length Tag Key: frame len Mo caer ot 1 Length Tag Key: frame len
T Propagate Channel State: Yes
OFDM Serializer P—m e
Bl I I
Length Tag Key: frame len Bits per output byte: 8 it on
Input is shifted: True FIF
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SBL Frame

OFDM Chain in GNU Radio
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OFDM Receiver in GNU Radio

Channel Model
Noise Voltage: 0

Taps: (0,0,1,0.0,0,0.0,10.

Stream to Vector
Num Items: 64

Seed: 42
Block Tag Propagation: Yes

Stream to Tagged Stream
Vector Length: 64

Packet Length: 10

Length Tag Key: frzme_len

FFT
FFT Size: 64
Foi
Window:
Shift: Yes
Num. Threads: 1

rd/Reverse: Forward

OFDM Channel Estimation
Synch. symbol 1: sync_wordl
Synch. symbol 2: sync_wora2
Number of data symbols: §

Maximum carrier offset: -1

OFDM Frame Equalizer
FFT length: 64

CP length: 16

Equalizer: <gnura.e359f0> >
Length Tag Key: frame_len

Propagate Channel State: Yes

OFDM Serializer
FFT length: 64

Length Tag Key: frame len
Input is shifted: True

Occupied Carriers: [-..., 26]

Constel|
Constellation Object:

e

Monika Bansal
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Repack Bits
Bits per input byte: 2
Bits per output byte: 8

Key Filte:
Display: On

Implementation in SDR
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Implementation of SBL algorithm in place of existing Channel

Estimation block.
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Comparing Plot
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Summary

m Implemented SBL based channel estimation algorithm in GNU
radio.

m Simulation curves verify the advantages of SSR based
algorithm.
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Future Work

m Implementation of joint channel estimation and data detection
SBL and other SSR based algorithms in simulation set up.

m Real time performance evaluation of SSR based channel
estimation algorithms using RF hardware such as USRP N210.

m Analyse other group testing algorithms in PAC learning model
and give bounds on the no. of tests.
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