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Approximate Set Identification: PAC Analysis for Group Testing Group Testing Framework

Group Testing

A set of N items with k defective items (k�N).

Group test: A group of items is tested in a group test

Test outcome 1 indicates presence of defective item(s)
Outcome 0 indicates all items are non-defective in the test

Main issues:
Sample Complexity
Correctness of solution
Pooling Design
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Figure: A toy example for non-adaptive group testing.
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Group Testing Model

y = Ax

=
∨

j :xj=1

acj

y ∈ {0, 1}M is the binary test outcome vector

acj ∈ {0, 1}
M is the j th column of A

ari ∈ {0, 1}
n is the i th row of A

A(i , j) ∼ B(p) i.i.d.

x ∈ {0, 1}n is test item vector
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Approximate Set Identification: PAC Analysis for Group Testing Function Learning Model

Learning Problem

Learn unknown target function f (·) ∈ C

Available items to the learner:

Random examples: ai

Corresponding label: yi

ai ∈ {0, 1}n

yi = f (ai ) ∈ {0, 1}
f : {0, 1}n → {0, 1} is some boolean function

How many examples do we need to output an hypothesis f ∗ s.t. maximum
error is ε with confidence 1− δ?
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Figure Revisited

Figure: A toy example for function learning.Monika Bansal (Department of ECE, IISc) PAC Analysis for Group Testing June 18, 2016 7 / 36
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Group Testing as a Function Learning Problem

Group testing Learning model
Target function x f (·)

Random example ari ai

Label y(i) yi
Distribution B(p) D

Output hypothesis x̂ f ∗

Goal: Analyze group testing recovery algorithms using PAC (Probably
Approximately Correct) framework applied to function learning problems.
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PAC Analysis

A learning algorithm is said to be PAC-learn C with approximation
parameter ε and confidence parameter δ if ∀ distributions D and all target
functions f ∈ C, the algorithm draws M samples, runs for time at most t
and outputs a function f ∗ s.t.

e(f ∗, f ) = Pra∼D (f ∗(a) 6= f (a))

Pr (e(f ∗, f ) > ε) ≤ δ

With prob. 1− δ the output hypothesis f ∗ will make at most ε error.
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Approximate Set Identification: PAC Analysis for Group Testing PAC Analysis: Approximate Set Identification

Defective Set Recovery

Column Matching (CoMa)1 Algorithm

Definite Defective (DD)2 Algorithm

1Non-adaptive Group Testing: Explicit Bounds and Novel Algorithms
2Group Testing Algorithms: Bounds and Simulations
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Approximate Set Identification: PAC Analysis for Group Testing PAC Analysis: Approximate Set Identification

ε Approximate Set Identification

Allowed hidden non-defective items

Pai∼B (x̂(ai ) 6= x(ai )) = (1− (1− p)G )(1− p)k ≤ ε

gε =

⌊
ln
(

1− ε/ (1− p)k
)

ln (1− p)

⌋
P(G ≤ gε) ≥ 1− δ
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Approximate Set Identification: PAC Analysis for Group Testing PAC Analysis: Approximate Set Identification

Allowed unidentified defective items

Pai∼B (x̂(ai ) 6= x(ai )) = (1− (1− p)D)(1− p)k−D ≤ ε

dε =

⌊
ln(1 + ε/(1− p)k)

ln(1/(1− p))

⌋
P(D ≤ dε) ≥ 1− δ
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Approximate Set Identification: PAC Analysis for Group Testing PAC Analysis: Approximate Set Identification

PAC type bound for CoMa

Theorem 1

The sufficient number of tests such that estimated set using CoMa does
not agree with the true defective set on the future group tests with
probability at most ε with confidence parameter 1− δ is given as,

Mgε =
log
( n−k
gε+1

)
+ log 1

δ

log (1/(1− (1− p)k + (1− p)gε+k+1))
,

P(e(x̂, x) > ε) = P(G ≥ gε) ≤
(
n − k

gε + 1

)
Ph
gε+1(M)

where, Ph
gε+1(M) =

(
1− (1− p)k + (1− p)gε+1+k

)M
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Bound on success probabilities
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Bound on number of tests in PAC setting

Confidence parameter (1-δ)
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Approximate Set Identification: PAC Analysis for Group Testing PAC Analysis: Approximate Set Identification

PAC type bound for DD

Theorem 2

The sufficiency bound on the number of tests such that estimated set
using DD do not agree with the true defective set on the future group tests
with probability at most ε with confidence parameter 1− δ is given as,(

k

dε + 1

)
(1− (dε + 1)p(1− p)k−1+ḡ+g̃ )M ≤ δ,

P(e(x̂, x) > ε/G = g) ≤
(

k

dε + 1

)
(1− (dε + 1)p(1− p)k−1(1− p)g )M ,

P(e(x̂, x) > ε) ≤
(

k

dε + 1

)(
1− (dε + 1)p(1− p)k−1(1− p)ḡ+g̃

)M
.

where ḡ = (N − k)(1− p(1− p)k)M and g̃ is a tuning parameter which
depends on dε.
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Bound on success probabilities
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Bound on number of tests in PAC setting

Confidence parameter (1-δ)
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Conclusions

PAC analysis resulted in approximate set identification analysis

Full defective set can always be recovered from approximate set

Two stage procedure has more flexibility

Once we identify a big number of non-defective items, random
pooling does not give much further information
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SSR for OFDM channel estimation: Implementation in SDR Sparsity in Channel

Wireless Communication Channel

Sparse in lag domain
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SSR for OFDM channel estimation: Implementation in SDR Sparsity in Channel

OFDM Channel Model

y = XFh + v

y ∈ CN×1 is the received vector after FFT

X ∈ CN×N contains data symbol and pilot symbols along the diagonal

F ∈ CN×L(N > L) contains the first L columns of N × N DFT matrix

v ∈ CN×1 ∼ CN (0, σ2I) is the AWGN noise

h ∈ CL×1 is the time domain channel response
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SSR for OFDM channel estimation: Implementation in SDR Sparsity in Channel

Channel Model using Pilots only:

yP = XpFph + vp, (P < L)

= φph + vp
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SSR for OFDM channel estimation: Implementation in SDR SBL Framework

SBL Framework

h ∼ CN (0,Γ), Γ = diag(γ(1), ..., γ(L))

SBL estimation problem:

ĥ = arg max
h,γ∈RL×1

+

p(yp|h; γ)p(h; γ)

= arg min
h,γ∈RL×1

+

‖yp − XpFph‖2
2

σ2
+ log|Γ|+ hHΓ−1h

Instead of estimating h directly, we first estimate γ using type II ML
estimate as given below

γ̂ML = arg max
γ∈RL×1

+

p(yp; γ)
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SSR for OFDM channel estimation: Implementation in SDR SBL Framework

EM algorithm

p(h; γ) =
L∏

i=1

(πγ(i))−1 exp

(
−|h(i)|2

γ(i)

)

E-step: Q
(
γ|γ(r)

)
= Eh|yp ;γ(r)

[
log p(yp,h; γ)

]
M-step: γ(r+1) = arg max

γ∈RL×1
+

Q
(
γ|γ(r)

)
γ(r+1)(i) = Σ(i , i) + |µ(i)|2

Probability densities:

p
(

h|yp; γ(r)
)

= CN (µ,Σ)

Σ = Γ(r) − Γ(r)φHp (σ2IPb
+ φpΓ(r)φHp )−1φpΓ(r), µ = σ−2ΣφHp yp
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SSR for OFDM channel estimation: Implementation in SDR SBL Framework

SBL Algorithm for OFDM Channel Estimation

Algorithm 1 SBL for estimating time domain channel taps

Input: yp, φp, rmax and ε.

Initialize Γ(0) = IL, Set difference = 1, r = 0
while (difference> ε and r < rmax)
E-step: µ = σ−2ΣφHp yp

Σ = Γ(r) − Γ(r)φHp
(
σ2IPb

+ φpΓ(r)φHp
)−1

φpΓ(r)

M-step: γ(r+1)(i) = Σ(i , i) + |µ|2 for i = 1, 2, . . . , L
difference =∆ ‖γ(r+1) − γ(r)‖2

2, r ← r + 1 end
output: µ, γ(r)
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SSR for OFDM channel estimation: Implementation in SDR Implementation in GNU Radio

Introduction to GNU Radio

A software development tool kit with signal processing blocks
written in C++/Python.

GRC (GNU Radio Companion) is the user interface for GNU Radio.

Can be used with external RF hardware (such as USRP N210) to
create Software Defined Radio(SDR).
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System architecture
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OFDM Chain in GNU Radio
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OFDM Transmit Chain in GNU Radio
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OFDM Receive Chain in GNU Radio
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SSR for OFDM channel estimation: Implementation in SDR Experiment Results

Experiment Results

System Parameters:

Number of OFDM sub-carriers (N) = 64

Cyclic prefix (CP) = 16

Packet size = 92 Bytes

Cyclic redundancy check (CRC) = 32 bits = 4 Bytes

Number of sync words per packet = 2 OFDM symbols

Header length = 1 OFDM symbol

Header modulation = BPSK

Data Modulation = QPSK

Centre frequency (fc) = 1.1GHz

Bandwidth (BW) = 500kHz

Sampling frequency (fs) = 1MS/sec
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SNR in dB
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Figure: One tap channel real data performance
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SNR in dB
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Figure: Two tap channel real data performance
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SNR in dB
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Figure: Three tap channel real data performance
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Real Time Channel
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Future Work

Joint data detection and channel estimation algorithms

Throughput analysis
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