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Millimeter Wave Channel Model

The model for a mmWave channel can be written as1:

H =

Np∑
l=1

αlaR(θR,l , φR,l)a
H
T (θT ,l , φT ,l) = ARHbA

H
T

Np is the total number of paths

αl is the complex gain associated with the l-th path, l ∈ {1, 2, . . .Np}

aR(θR , φR) and aT (θT , φT ) are the 3D receive and transmit array steering vectors
respectively

Hb = diag(α) ∈ CNp×Np is the beamspace/virtual channel matrix

Ar ∈ CNr×Np and At ∈ CNt×Np contain the array response vectors for the receiver
and transmitter respectively.

1[1]: “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE Journal of
Selected Topics in Signal Processing, April 2016

(Chirag Ramesh, IISc) Deep Learning for mmWave Channel Estimation September 08, 2018 3 / 32



Assume that the AoAs and the AoDs come from a grid of size G
(θ, φ ∈ {0, 2π

G
, · · · , 2π(G−1)

G
}) with G � Np.

Ar ∈ CNr×G and At ∈ CNt×G contain the array response vectors corresponding to
the angles in the grid for the receiver and transmitter respectively.

Hb ∈ CG×G is an Np sparse matrix with Np non-zero elements corresponding to the
angles in the grid.

H = ARHbA
H
T = ARHbA

H
T

For a large G , grid error is negligible.
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mmWave Channel Estimation using Sparse Signal Processing

The received signal using Hybrid Analog/Digital Signal Processing can be written as
follows:

Y = WHHFX + N

F = FRFFBB ∈ CNt×Ns is the transmit precoding matrix

W = WRFWBB ∈ CNr×Ns is the received combining matrix

Let the pilot matrix be X =
√
PI ∈ CNs×Ns

The received signal can be written as Y =
√
PWHHF + N

After performing vectorization, the received signal is

y =
√
P(FT ⊗WH)vec(H) + n
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Since vec(H) = ((AH
T )T ⊗ AR)vec(Hb), the signal can be further simplified to

y =
√
P(FT ⊗WH)((AH

T )T ⊗ AR)vec(Hb) + n

⇒ y =
√
P(FT (AH

T )T ⊗WHAR)vec(Hb) + n

⇒ y = Qhb + n

Estimation of hb is formulated as a sparse signal recovery problem:

min
hb
‖hb‖0

s.t. ‖y −Qhb‖2 ≤ σ

Current literature uses Least Absolute Shrinkage and Selection Operator (LASSO),
standard greedy recovery algorithms such as Orthogonal Matching Pursuit (OMP)
and adaptive compressive sensing techniques.
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Deep Learning Basics

A neuron is the basic unit
of a neural network.

A Neural Network (NN) is
made by interconnecting
these neurons in a layered
architecture.

The simplest NN, a
Perceptron, has a step
function as its activation
function.

For training this NN, a
loss function is minimized.
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A fully connected
feedforward NN has
neurons connected to all
the neurons in the next
layer (unidirectional).

A Convolutional Neural
Network (CNN) has local
and shared connections.

Recurrent Neural
Networks (RNN) are NNs
with bidirectional
connections.

Deep Neural Networks
(DNN) are NNs with a
very large number of fully
connected layers.
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Why use Deep Learning?

Advantages

Convenient optimization capability

High processing capability

Good computation speed

Custom loss function

Complex models can be easily
learnt

Uses history of observations

Limitations

Converge to the local optimum of the non
convex loss functions

DNNs are subject to overfitting

Hyperparameter tuning is empirical

DNNs are data hungry

No performance guarantees

Difficult to interpret what is learnt
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Channel estimation using LDAMP Neural Network

What is LDAMP?

LDAMP stands for Learned Denoising-based Approximate Message Passing2.

Combination of iterative sparse signal recovery with a Denoising Convolutional
Neural Network (DnCNN).

More obscure features learnt.

Comparatively, it is faster and more accurate than other competing techniques.

2[2]: “Deep Learning-based Channel Estimation for Beamspace mmWave Massive MIMO Systems,” IEEE
Wireless Communications Letters, May 2018
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System Model

Lens antenna array
architecture used

MxN antennas from
the 3D lens are
connected to K RF
chains via the
selection network W

Here, K � MN

Received signal
y ∈ RMN×1

Channel h ∈ RMN×1

Network W ∈ RK×MN

The uplink received signal can be written as:
y = hs + n

The received signal after the RF chains can be
represented as: r = Wy = (Ws)h + n
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DnCNN structure

Within the DnCNN, twenty convolutional layers are used.

The first layer has 64 (3× 3× 1) filters with a Rectified Linear Unit (ReLU).

Each of the next 18 layers have 64 (3× 3× 64) filters with batch normalization and
then passed through a ReLU.

The final convolutional layer uses one (3× 3× 64) filter to reconstruct the signal.

The residual noise is learnt from the noisy channel and then subtracted from it.
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Results

One user with a 4 path
mmWave channel

Implementation on MatCovNet

L = 10 layers

M = N = 64

Training, Validation and Test
sets contain 16640, 6400 and
10000 samples.

Stochastic Gradient Descent
used along with Adaptive
Moment Estimation (ADAM)
optimizer
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GAN for mmWave Channel Covariance Estimation

What is a GAN?

Generative Adversarial
Network is a game theoretic
approach for synthetic data
generation

The generator G : RZ → RM

creates synthetic data

The discriminator
D : RM → {0, 1} assesses the
quality of the generated data

Loss functions JD(θG , θD) and
JG(θG , θD) are defined.
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Why use a GAN?

Highly effective for feature
extraction & segmentation in
image processing

Conditional GANs represent
multi-modal densities better
than GANs

Similar to maximizing the
mutual information between
the ”latent code” and the
output of the generator

GANs implicitly learn the data
generating distribution
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System Model for UL Channel Estimation3

’N’ BSs are connected to
each other to share UL
training signals.

Each BS has ’M’ antennas
whereas the users have
only one antenna each.

Each BS has only one RF
chain and applies
analog-only combining.

SIMO Wideband OFDM
system with K subcarriers
is considered.

3[3]: “Generative Adversarial Estimation of Channel Covariance in Vehicular Millimeter Wave Systems,”
arXiv:1808.02208v1 [cs.IT]
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The received signal post combining on the k-th subcarrier for the n-th BS is written
as

yk,n = wT
n hk,nsk + vk

hk,n ∈ CM×1 is the uplink channel vector between the user and the n-th BS on the
k-th subcarrier

sk ∈ C1 is the pilot symbol on the k-th subcarrier

wn ∈ CM×1 is the analog combiner at the n-th BS

All the received signals at the BSs are collected together

y = [y1,1, · · · , yK ,1, y1,2, · · · , yK ,2, · · · , yK ,N ]T

The channel covariance matrix is to be jointly estimated

(Chirag Ramesh, IISc) Deep Learning for mmWave Channel Estimation September 08, 2018 17 / 32



Architecture

G : RZ x RNK → RM2

D : RM2

x RNK → {0, 1}
R̂ = G(z, y)

200 epochs training

D consists of stride-2 CNN with ReLU function.

ADAM optimizer used with batch size of 256.

Loss Function,
L(G,D) = E[log(D(R, y))] + E[log(1−D(G(z, y)))]
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Results

Simulated using ray-tracer Wireless InSite and TensorFlow

K = 64 subcarriers

N = 4 BSs

M = 32 Rx. Antennas on a ULA

Upto 5 MPCs for each channel
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Channel estimation using LSTM Network

What is LSTM?

Long Short-Term Memory
(LSTM) Neural Network
is a NN with LSTM units.

The LSTMs are trained to
”forget” data after some
amount of time.

LSTMs handle time series
data excellently.

They are insensitive to
time gap between images.

Vanishing gradient
problem is alleviated in
LSTMs.
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System Model 4

Flat block-fading MIMO system is considered.

Received signal is yi = Hpi + ni

H ∈ Cr×t is the channel matrix

pi ∈ Ct×1 is the i-th pilot, i ∈ {1, 2, · · · ,N}

Channel data + Side information = Input of the network

The side information features used are:

Frequency bands and the associated absorption values
Location measurement data
Weather, temperature and humidity

4[4]: “Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach,”
in IEEE Transactions on Network Science and Engineering, June 2018
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Procedure

Input: CSI data + side information for
each of the N channels

LSTM works very well for sequential
task learning, it is used to predict CSI.

Output: Predicted CSI image

l2 loss function is used for training.

A two step offline-online training is
performed.
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Data Collection
Data is collected for the following
scenarios:

Case 1: Outdoor free space
scenario. Only LOS
transmission.

Case 2: Outdoor environment
with few multi path
components.

Case 3: Indoor closed
environment with a workroom.

Case 4: Indoor closed
environment in a corridor.

Online training happens once every
five minutes.

Average ADR(%) Case 1 Case 2 Case 3 Case 4
OCEAN 2.73 2.65 3.46 3.22
ANN 6.83 7.26 6.84 5.66
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Challenges for Wireless Physical Layer with Deep Learning

Existing Architectures for Wireless Systems with Deep Learning5

Modulation scheme
recognition is
necessary.

Previous techniques
have used SVMs and
ANNs for modulation
recognition.

A four layer NN
shown can easily
distinguish between
modulation schemes.

5[5]: “Deep Learning for Wireless Physical Layer: Opportunities and Challenges,” arXiv:1710.05312 [cs.IT]

(Chirag Ramesh, IISc) Deep Learning for mmWave Channel Estimation September 08, 2018 24 / 32



Belief Propagation algorithm with L iterations can be unfolded into 2L layered fully
connected DNN.

The input is the N-dimensional LLR. The output is an N-bit decoded codeword.
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LSTMs are used for data detection for a wideband channel.

It performs similar to Maximum Likelihood Sequence Detection.

An NN Decoder is used to decode codewords of length N with K information bits.

It is shown to have worked for polar codes.
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DetNet architecture is used for
data detection for a
narrowband channel.

Communication is considered
as an end to end
reconstruction problem and
modelled as an Autoencoder.

This autoencoder by default is
trained to provide end to end
performance, such as BER.
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Open loop, feedback and
quantized feedback
architectures for MIMO
communications are
shown.

For a MU case,
J =

∑N
i=1 αiJi .

Ji is the loss function for
the i-th user.∑

i αi = 1

Each Ji is a cross entropy
loss function.
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Challenges

For data detection, current architectures perform a straight forward unfolding of the
iterations into different layers of the DNN. Knowledge of existing communication
algorithms can enable creating novel specific architectures.

Optimal input, output representations for deep learning systems are unknown.

Performance analysis for such novel architectures can be done based on existing
wireless literature.

The exact functions learnt by the weights aren’t clear yet. Understanding how these
functions are built can help us understand how to build algorithms either with or
without using DNNs.

A combination of DNNs and existing schemes can be used so that each of them give
their best features.
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Thank You!
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