Learning Gaussian Mixtures

Lekshmi Ramesh

Indian Institute of Science Bangalore

June 16, 2018

Gaussian mixture model

- Gaussian mixture model

$$
p(\mathbf{x} ; \theta)=\sum_{i=1}^{k} w_{i} \mathcal{N}\left(\boldsymbol{\mu}_{i}, \sigma_{i}^{2} I_{d}\right)
$$

where $\theta=\left(\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k},\left\{\sigma_{i}\right\}_{i=1}^{k},\left\{w_{i}\right\}_{i=1}^{k}\right)$

- Given data points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$, the goal is to fit a mixture of k Gaussians to it

Gaussian mixture model

Separation between components

■ We look at the clustering problem, i.e., assigning a label from $\{1, \ldots, k\}$ to each \mathbf{x}_{i}

- Separation between component Gaussians
- Cannot resolve between two clusters if the means are very close
- For e.g., in 1-D, if separation is approximately three standard deviations, then clusters are "well separated"

■ What happens in higher dimensions?

Separation between components

■ For $\mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}, \sigma^{2} I_{d}\right)$, expected squared distance from center is

$$
\mathbb{E}\|\mathbf{x}-\boldsymbol{\mu}\|_{2}^{2}=d \sigma^{2}
$$

- To resolve between two d-dimensional spherical Gaussians, need separation of $2 \sqrt{d} \sigma$ between their centers
- Separation requirement may be difficult to meet for huge d
- Idea: project data onto a k-dimensional subspace of \mathbb{R}^{d}-now separation requirement would be $\sqrt{k} \sigma$
This k-dimensional subspace will be the span of the mean vectors

Key ideas

- Project data onto a lower dimension subspace for easier separation condition
- The best fit 1-D subspace to a spherical Gaussian is the line through its center and the origin
- The best fit k -dimensional subspace for k spherical Gaussians is the subspace containing their centers

Best fit subspace to a spherical Gaussian

Projection onto span of means

■ Assume that the means $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}$ are known and let U be the subspace spanned by them

- Projecting the data onto U doesn't change the separation, because the means remain unchanged
- Can use distance-based clustering in \mathbb{R}^{k} which work with $k^{\frac{1}{4}}$ separation
- In reality, we don't know the span of the means

Find a projection such that the location of the mean vectors is preserved

Span of means and SVD

- Let $V \subset \mathbb{R}^{d}$ be the span of top k singular vectors of data matrix $X \in \mathbb{R}^{m \times d}$

■ If we project rows of X onto V, then separation between mean vectors is approximately preserved: V behaves in the same way as U

■ For a vector v, let $\operatorname{proj}_{W} v$ denote its projection onto subspace W For a matrix M, let $\operatorname{proj}_{W} M$ is a matrix whose rows are the rows of M projected onto W

Span of means and SVD

- Facts
- V is the subspace that maximizes $\left\|\operatorname{proj}_{W} A\right\|$ among all k-dimensional subspaces W
- U is the subspace that maximizes $\mathbb{E}\left\|\operatorname{proj}_{W} A\right\|$
- Connecting U and V

■ On average, the best k-dimensional subspace approximating X is $U=\operatorname{span}\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}\right\}$

- With large probability, the the space spanned by the top k singular vectors of X approximates U well

Concentration result

■ For a sufficiently large sample from a mixture of Gaussians, with high probability the subspace found by SVD is very close to the one spanned by the mean vectors

- First show that for an arbitrary subspace W,
- Show $\mathbb{P}\left(\left\|\operatorname{proj}_{W} A\right\|^{2}>(1+\epsilon) \mathbb{E}\left\|\operatorname{proj}_{W} A\right\|^{2}\right)<k e^{\frac{-\epsilon^{2} m k}{8}}$
- Proof uses χ^{2} concentration

Main result

- Let the rows of $X \in \mathbb{R}^{m \times d}$ be sampled from a mixture of Gaussians with unifrom weights, means $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}$ and variance σ. Let $V \subset \mathbb{R}^{d}$ be the subspace spanned by the top k singular vectors of X and let U be the span of the means. Then, for $\epsilon \in\left(0, \frac{1}{2}\right)$, if

$$
m \geq \frac{c k}{\epsilon^{2}}+\left(d \ln \frac{d}{\epsilon}+\frac{d}{d-k} \ln \frac{k}{\delta}\right)
$$

we have w.p. $1-\delta$

$$
\begin{equation*}
\left\|\operatorname{proj}_{U} \mathbb{E} X\right\|^{2}-\left\|\operatorname{proj}_{V} \mathbb{E} X\right\|^{2} \leq \epsilon m \sigma^{2}\left(\frac{d}{k}-1\right) \tag{1}
\end{equation*}
$$

■ Shows that $\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{i}^{\prime}\right\|$ is small, where $\boldsymbol{\mu}_{i}^{\prime}$ are the projected means

Other approaches

■ Algorithms based on random projections
■ Algorithms that combine projection idea and EM

- Distribution learning: output a mixture distribution that minimizes a certain loss
- Separation criterion required for all clustering algorithms, not necessary for learning

Reference

S. Vempala and G. Wang. A Spectral Algorithm for Learning Mixture Models. Journal of Computer and System Sciences, 2004.

