Sparse Support Recovery via Covariance Estimation

Lekshmi Ramesh

Indian Institute of Science Bangalore

June 30, 2017

Outline

■ Setup

- Multiple measurement vector setting
- Support recovery problem
- Support recovery as covariance estimation
- Covariance matching, Gaussian approximation
- Maximum likelihood-based estimation
- Solution using non negative quadratic programming
- Simulation results

■ Non negative sparse recovery problem, Guarantees
■ Conclusions, Future work

Problem setup

- Multiple measurement vector model:

Observations $\left\{\mathbf{y}_{i}\right\}_{i=1}^{L}$ are generated from the following linear model:

$$
\mathbf{y}_{i}=\Phi \mathbf{x}_{i}+\mathbf{w}_{i}, \quad i \in[L]
$$

where $\Phi \in \mathbb{R}^{m \times N}(m<N), \mathbf{x}_{i} \in \mathbb{R}^{N}$ unknown, random and noise $\mathbf{w}_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2} I\right)$

- Assumptions:
- \mathbf{x}_{i} are k-sparse with common support $\operatorname{supp}\left(\mathbf{x}_{i}\right)=T$ for some $T \subset[N]$ with $|T| \leq k, \forall i \in[L]$
- Non-zero entries uncorrelated

$$
\mathbb{E}\left[\mathbf{x}_{t, i} \mathbf{x}_{t, j}\right]=0, t \in[L], i, j \in T
$$

■ Goal: Recover the common support T given $\left\{\mathbf{y}_{i}\right\}_{i=1}^{L}, \Phi$

Problem setup

■ We impose the following prior on \mathbf{x}_{i}

$$
\begin{aligned}
& p\left(\mathbf{x}_{i} ; \gamma\right)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi \gamma_{j}}} \exp \left(-\frac{\mathbf{x}_{i j}^{2}}{2 \gamma_{j}}\right) \\
& \text { i.e., } \mathbf{x}_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Gamma) \text { where } \Gamma=\operatorname{diag}(\gamma)
\end{aligned}
$$

- Note:
- $\operatorname{supp}\left(\mathbf{x}_{i}\right)=\operatorname{supp}(\gamma)=T \quad\left(\right.$ since $\gamma_{j}=0 \Leftrightarrow x_{i j}=0 \quad$ a.s. $)$
- $\mathbf{y}_{i} \sim \mathcal{N}(0, \underbrace{\Phi \Gamma \Phi^{\top}+\sigma^{2} I}_{\Sigma \in \mathbb{R}^{m \times m}})$

■ Equivalent problem: Recover Γ from (an estimate of) Σ

- $\mathbf{x}_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Gamma)$

Γ
- $\mathbf{y}_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Sigma)$

$\Sigma=\Phi \Gamma \Phi^{\top}+\sigma^{2} I$

Support recovery as covariance estimation

- We work with the sample covariance matrix $\hat{\Sigma}=\frac{1}{L} \sum_{i=1}^{L} \mathbf{y}_{i} \mathbf{y}_{i}^{\top}$
- Express $\hat{\Sigma}$ as

$$
\hat{\Sigma}=\Sigma+E,
$$

where E : Noise/Error matrix

- Noiseless case $\left(\sigma^{2}=0\right)$

$$
\begin{aligned}
& \hat{\Sigma}=\Phi \Gamma \Phi^{\top}+E \\
& \quad \downarrow \text { vectorize } \\
& \mathbf{r}=\underbrace{(\Phi \odot \Phi)}_{A \in \mathbb{R}^{m^{2} \times N}} \gamma+\mathbf{e}
\end{aligned}
$$

where \odot denotes the Khatri-Rao product

- We will find the maximum likelihood estimate of γ For that, we first derive the noise statistics ${ }^{\square}$

Noise statistics

■ Mean

$$
\mathbb{E}(E)=\frac{1}{L} \sum_{i=1}^{L} \mathbb{E} \mathbf{y}_{i} \mathbf{y}_{i}^{\top}-\Sigma=0
$$

■ Covariance

$$
\begin{aligned}
\operatorname{cov}(E) & =\operatorname{cov}\left(\sum_{i=1}^{L}\left(\frac{\mathbf{y}_{i} \mathbf{y}_{i}^{\top}}{L}-\frac{\Sigma}{L}\right)\right) \\
& =L \operatorname{cov}\left(\frac{\mathbf{y}_{1} \mathbf{y}_{1}^{\top}}{L}-\frac{\Sigma}{L}\right) \\
& =\frac{1}{L} \operatorname{cov}\left(\mathbf{y}_{1} \mathbf{y}_{1}^{\top}-\Sigma\right) \\
& =\frac{1}{L} \operatorname{cov}\left(\mathbf{y} \mathbf{y}^{\top}\right)
\end{aligned}
$$

(sum of L indep. random matrices)

Noise statistics

$$
\operatorname{cov}(E)=\frac{1}{L} \operatorname{cov}\left(\mathbf{y} \mathbf{y}^{\top}\right)
$$

■ Represent \mathbf{y} as

$$
\mathbf{y}=C \mathbf{z}
$$

where $\mathbf{z} \sim \mathcal{N}(0, I)$ and $\Sigma=C C^{\top}$

- For $\sigma^{2}=0, \Sigma=\Phi \Gamma \Phi^{\top}$; can take $C=\Phi \Gamma^{\frac{1}{2}}$
- Using properties of Kronecker products:

$$
\operatorname{cov}(\operatorname{vec}(E))=\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) \underbrace{\operatorname{cov}\left(\operatorname{vec}\left(\mathbf{z} \mathbf{z}^{\top}\right)\right)}_{B \in \mathbb{R}^{N^{2} \times N^{2}}}\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top}
$$

Example: $\mathrm{N}=3$

- Let $\mathbf{z}=\left[z_{1}, z_{2}, z_{3}\right]^{\top}$ with $z_{i} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$. Then,

$$
\mathbf{z z}^{\top}=\left[\begin{array}{ccc}
z_{1}^{2} & z_{1} z_{2} & z_{1} z_{3} \\
z_{1} z_{2} & z_{2}^{2} & z_{2} z_{3} \\
z_{1} z_{3} & z_{2} z_{3} & z_{3}^{2}
\end{array}\right] \xrightarrow{\text { vectorize }}\left[\begin{array}{c}
z_{1}^{2} \\
z_{1} z_{2} \\
z_{1} z_{3} \\
z_{1} z_{2} \\
z_{2}^{2} \\
z_{2} z_{3} \\
z_{1} z_{3} \\
z_{2} z_{3} \\
z_{3}^{2}
\end{array}\right]
$$

Example: $\mathrm{N}=3$

- The covariance matrix B of $\operatorname{vec}\left(\mathbf{z z}^{\top}\right)$ will be of size 9×9 with $B_{i, j} \in\{0,1,2\}, 1 \leq i, j \leq 3$.

■ For e.g.,

$$
\begin{aligned}
& B_{1,1}=\operatorname{cov}\left(z_{1}^{2}, z_{1}^{2}\right)=\mathbb{E} z_{1}^{4}-\left(\mathbb{E} z_{1}^{2}\right)^{2}=3-1=2 \\
& B_{1,2}=\operatorname{cov}\left(z_{1}^{2}, z_{1} z_{2}\right)=\mathbb{E} z_{1}^{3} z_{2}-\mathbb{E} z_{1}^{2} \mathbb{E} z_{1} z_{2}=0 \\
& B_{2,4}=\operatorname{cov}\left(z_{1} z_{2}, z_{1} z_{2}\right)=\mathbb{E} z_{1}^{2} z_{2}^{2}-\mathbb{E} z_{1} z_{2} \mathbb{E} z_{1} z_{2}=1
\end{aligned}
$$

Example: $\mathrm{N}=3$

$$
B=\operatorname{cov}\left(\operatorname{vec}\left(\mathbf{z z}^{\top}\right)\right)=\left[\begin{array}{ccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

- We now have the following model

$$
\begin{equation*}
\mathbf{r}=A \boldsymbol{\gamma}+\mathbf{e} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
A & =(\Phi \odot \Phi) \\
\mathbb{E}[\mathbf{e}] & =0 \\
\operatorname{cov}(\mathbf{e}) & =W=\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) B\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top} .
\end{aligned}
$$

Observations

- The noise term vanishes as $L \rightarrow \infty$
- The noise covariance depends on the parameter to be estimated
- $\mathbf{r}, \Phi \odot \Phi$ and \mathbf{e} have redundant entries - restrict to the $\frac{m(m+1)}{2}$ distinct entries

New model, Gaussian approximation

- Pre-multiply (1) by $P \in \mathbb{R}^{\frac{m(m+1)}{2} \times m^{2}}$, formed using a subset of the rows of $I_{m^{2}}$, that picks the relevant entries. Thus,

$$
\mathbf{r}_{P}=A_{P} \gamma+\mathbf{e}_{P}
$$

where $\mathbf{r}_{P}:=P r, A_{P}:=P A$, and $\mathbf{e}_{P}:=P n$.

- Further, we approximate the distribution of n_{P} by $\mathcal{N}\left(0, W_{P}\right)$, where $W_{P}=P W P^{\top}$

■ Thus, $\mathbf{r}_{P} \sim \mathcal{N}\left(A_{P} \gamma, W_{P}\right)$

ML estimation of γ

■ Denote the ML estimate of γ by γ_{ML}

$$
\begin{equation*}
\gamma_{\mathrm{ML}}=\underset{\gamma \geq 0}{\arg \max } p\left(\mathbf{r}_{P} ; \gamma\right), \tag{2}
\end{equation*}
$$

where

$$
p\left(\mathbf{r}_{P} ; \gamma\right)=\frac{1}{(2 \pi)^{\frac{m(m+1)}{4}}\left|W_{P}\right|^{\frac{1}{2}}} \exp \left(\frac{-\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right)}{2}\right)
$$

ML estimation of γ

- Simplifying (2), we get

$$
\begin{equation*}
\boldsymbol{\gamma}_{\mathrm{ML}}=\underset{\gamma \geq 0}{\arg \min } \log \left|W_{P}\right|+\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right) . \tag{3}
\end{equation*}
$$

■ To solve (3)

- Initialize $\boldsymbol{\gamma}$, compute W_{P}
- Solve (for fixed W_{P})

$$
\underset{\gamma \geq 0}{\arg \min }\left(\mathbf{r}_{P}-A_{P} \boldsymbol{\gamma}\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \boldsymbol{\gamma}\right)
$$

- Recompute W_{P} and iterate

Non-negative quadratic program

$$
\underset{\gamma \geq 0}{\operatorname{minimize}}\left(\mathbf{r}_{P}-A_{P} \boldsymbol{\gamma}\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \boldsymbol{\gamma}\right)
$$

Solution (entry-wise update equation for γ):

$$
\gamma_{j}^{(i+1)}=\gamma_{j}^{(i)}\left(\frac{-b_{j}+\sqrt{b_{j}^{2}+4\left(Q^{+} \gamma^{(i)}\right)_{j}\left(Q^{-} \gamma^{(i)}\right)_{j}}}{2\left(Q^{+} \gamma^{(i)}\right)_{j}}\right)
$$

where $\mathbf{b}=-A_{P}^{\top} W_{P}^{-1} \mathbf{r}_{P}, Q=A_{P}^{\top} W_{P}^{-1} A_{P}$,

$$
Q_{i j}^{+}= \begin{cases}Q_{i j}, & \text { if } \quad Q_{i j}>0 \\ 0, & \text { otherwise }\end{cases}
$$

$$
Q_{i j}^{-}= \begin{cases}-Q_{i j}, & \text { if } \quad Q_{i j}<0 \\ 0, & \text { otherwise }\end{cases}
$$

Support recovery performance

$N=40, m=20, k=25$; exact recovery over 200 trials

Figure 1: Support recovery performance of the NNQP-based approach $18 / 31$

Support recovery performance

$N=70, m=20, L=50$; exact recovery over 200 trials

Figure 2: Support recovery performance of the NNQP-based approach hac

Observations

■ Exact support recovery possible for $k<m$ regime with 'small' L

- For $m \leq k \leq \alpha m$ for some $1 \leq \alpha<\frac{N}{m}$, recovery possible with 'large' L

■ Dependence of computational complexity on parameters

- L : in computing $\hat{\Sigma}$ (offline)
- m, N : scales as $m^{4} N^{2}$

Non negative least squares (NNLS)

■ Inner loop in the ML estimation problem

$$
\underset{\gamma \geq 0}{\arg \min }\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right)
$$

Note: no sparsity-inducing regularizer

- Canonical NNLS problem

$$
\begin{equation*}
\underset{\mathbf{x} \geq 0}{\arg \min }\|\mathbf{y}-\Phi \mathbf{x}\|_{2}^{2} \tag{NNLS}
\end{equation*}
$$

Question: When does (NNLS) return a sparse solution?

Non negative sparse recovery

- Canonical problem

$$
\begin{aligned}
& \underset{\mathbf{x}}{\arg \min }\|\mathbf{x}\|_{0} \\
& \text { s.t. } \quad \Phi \mathbf{x}=\mathbf{y}, \quad \mathbf{x} \geq 0,
\end{aligned}
$$

where $\|\mathbf{x}\|_{0}$: number of non-zero entries in \mathbf{x}
Question: Given $\mathbf{y} \in \mathbb{R}^{m}$ generated by $\mathbf{x}_{0} \in \mathbb{R}^{N}$ that is non negative and k-sparse, when does $\left(P_{0}^{+}\right)$return \mathbf{x}_{0} ?

Uniqueness condition-I

■ Let $F:=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathbf{x} \geq 0, \Phi \mathbf{x}=\mathbf{y}\right\}$ (feasible set for $\left(P_{0}^{+}\right)$)
$S_{k}:=\left\{\mathbf{x} \in \mathbb{R}^{N}:\|\mathbf{x}\|_{0} \leq k\right\}$
If $F \cap S_{k}=\left\{\mathbf{x}_{0}\right\}$ then $\left(P_{0}^{+}\right)$returns \mathbf{x}_{0}.

Theorem

Let $\mathbf{x}_{0} \in \mathbb{R}^{N}$ be a non negative k-sparse vector such that $\Phi \mathbf{x}_{0}=\mathbf{y}$. Then \mathbf{x}_{0} is the only k-sparse \mathbf{x} satisfying $\mathbf{x} \geq 0$ and $\Phi \mathbf{x}=\mathbf{y}$ if and only if every $\mathbf{v} \in \operatorname{ker}(\Phi) \backslash\{0\}$ has at least $(k+1)$ positive or $(k+1)$ negative entries.

- Sufficient to guarantee that $\left(P_{0}^{+}\right)$returns the true solution

Uniqueness condition-I

- Proof
(Sufficiency) Suppose that there exists $\mathbf{x}^{\prime} \neq \mathbf{x}_{0}$ such that $\mathbf{x}^{\prime} \geq 0$, $\left\|\mathbf{x}^{\prime}\right\|_{0} \leq k$ and $\Phi \mathbf{x}^{\prime}=\mathbf{y}$.
Then, $\Phi\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right)=0$ which implies

$$
\mathbf{v}:=\mathbf{x}^{\prime}-\mathbf{x}_{0} \in \operatorname{ker}(\Phi) \backslash\{0\} .
$$

Since both \mathbf{x}_{0} and \mathbf{x}^{\prime} are non-negative and k-sparse, \mathbf{v} has at most k positive and at most k negative entries, violating the sign-pattern condition.

- Proof (contd.)
(Necessity) Assume that the sign-pattern condition does not hold. That is, there exists $\mathbf{v} \in \operatorname{ker}(\Phi) \backslash\{0\}$ with at most k negative and k positive entries. We will show that we can find another non-negative k-sparse vector \mathbf{x}^{\prime} such that $\Phi \mathbf{x}^{\prime}=\mathbf{y}$.

Let $T:=\left\{i \in[N]: \mathbf{v}_{i}<0\right\}$. If \mathbf{x}_{0} is of the form

$$
\left(\mathbf{x}_{0}\right)_{i}= \begin{cases}-\mathbf{v}_{i}, & i \in T \\ 0, & \text { otherwise }\end{cases}
$$

then $\mathbf{x}^{\prime}=\mathbf{x}_{0}+\mathbf{v}$ is a non-negative k-sparse vector satisfying $\Phi \mathbf{x}^{\prime}=\Phi \mathbf{x}_{0}$.

This contradicts the uniqueness of \mathbf{x}_{0} as a non-negative k-sparse solution of $\Phi \mathbf{x}=\mathbf{y}$.

Uniqueness condition-II

■ Let $F:=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathbf{x} \geq 0, \Phi \mathbf{x}=\mathbf{y}\right\}$ (feasible set for $\left(P_{0}^{+}\right)$) $S_{k}:=\left\{\mathbf{x} \in \mathbb{R}^{N}:\|\mathbf{x}\|_{0} \leq k\right\}$
If $F=\left\{\mathbf{x}_{0}\right\}$ then (NNLS) returns \mathbf{x}_{0}.

Theorem

Let $\mathbf{x}_{0} \in \mathbb{R}^{N}$ be a non negative k-sparse vector such that $\Phi \mathbf{x}_{0}=\mathbf{y}$. Then \mathbf{x}_{0} is the only \mathbf{x} satisfying $\mathbf{x} \geq 0$ and $\Phi \mathbf{x}=\mathbf{y}$ if and only if every $\mathbf{v} \in \operatorname{ker}(\Phi) \backslash\{0\}$ has at least $(k+1)$ positive and $(k+1)$ negative entries.

- Sufficient to guarantee that (NNLS) returns the true solution (Any program of the form $\arg \min _{\mathbf{x} \geq 0}\|\mathbf{y}-\Phi \mathbf{x}\|_{p}$ with $p \geq 1$ will work)

Matrices satisfying uniqueness conditions

Every $\mathbf{v} \in \operatorname{ker}(\Phi) \backslash\{0\}$ has at least $(k+1)$ positive or/and $(k+1)$ negative entries

Question: Which matrices satisfy these sign pattern conditions?
■ Consider Φ such that $\|\mathbf{v}\|_{0}>2 k, \forall \mathbf{v} \in \operatorname{ker}(\Phi) \backslash\{0\}$ Then, every $\mathbf{v} \in \operatorname{ker}(\Phi) \backslash\{0\}$ has at least $(k+1)$ positive or $(k+1)$ negative entries

- Every set of $2 k$ columns of $\Phi \in \mathbb{R}^{m \times N}$ linearly independent Requires $m \geq 2 k$
Example: $\Phi_{i j} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$
Are there matrices satisfying the condition when $m<2 k$?

An equivalent characterization

■ Define
$U=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathbf{x}\right.$ has at most k positive \& at most k negative entries $\}$

- Condition I: $\operatorname{ker}(\Phi) \cap U=\{0\}$
- Bad event: There exists $\mathbf{v} \in \operatorname{ker}(\Phi)$ such that

$$
\sum_{i \in T_{p}} v_{i} \Phi_{i}+\sum_{j \in T_{n}}\left(-v_{j}\right)\left(-\Phi_{j}\right)=0
$$

where $T_{p}=\left\{i \in[N]: v_{i}>0\right\}, T_{n}=\left\{i \in[N]: v_{i}<0\right\}$, and $\left|T_{p}\right| \leq k,\left|T_{n}\right| \leq k$

An equivalent characterization

■ Bad event: There exist indices $\left\{i_{1}, i_{2}, \ldots, i_{2 k}\right\} \subset[N]$ such that

$$
0 \in \operatorname{conv}\left(\Phi_{i_{1}}, \ldots, \Phi_{i_{k}},-\Phi_{i_{k+1}}, \ldots,-\Phi_{i_{2 k}}\right)
$$

- Assume random Φ with entries drawn from some distribution P. For which P is the probability of the above event small?

Conclusions, Future work

Conclusions
■ Sparse support recovery using maximum likelihood based covariance estimation, no regularization parameter needed

- Support recovery possible even when $k>m$

■ Guarantees for non negative sparse recovery
Future work

- Characterization of the uniqueness conditions in terms of N, m, k
- Explore implications of uniqueness conditions for the covariance estimation problem

Thank you

