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Problem setup

m Multiple measurement vector model:
Observations {y;}/, are generated from the following linear
model:
yi =®x; +w;, 1€ [L],
where ® € R™V (m < N), x; € RY unknown, random and noise
wi % N(0,021)
m Assumptions:
m X; are k-sparse with common support
supp(x;) = T for some T C [N] with |T| < k, Vi € [L]

m Non-zero entries uncorrelated
E[xt,ixtyj] = 0, te [L], Z,] cT

m Goal: Recover the common support T given {y;}2,, ®



Problem setup

m We impose the following prior on x;

N 2
1 X4,
p(xiy) = exp (—”)

ie, x; i (0,I') where I' = diag(7y)

m Note:
m supp(x;) =supp(y) =T (since v, =0<z;; =0 as.)
my; ~N(0,8Td" + o21)

SeRmXxm

m Equivalent problem: Recover I' from (an estimate of) ¥



= xi M N(O,T)

XL

sz
my; ~

(0, 2)

Y = (I)I‘(I)T n 021
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Support recovery as covariance estimation
= We work with the sample covariance matrix ¥ = %Z{;l yiy,

m Express S as
Y=YX+E,
where E: Noise/Error matrix

= Noiseless case (02 = 0)

N=0I'd" +E

vectorize

—

r=(P0®)v+e
———
AcRmZxN

where ® denotes the Khatri-Rao product

m We will find the maximum likelihood estimate of ~
For that, we first derive the noise statistics



Noise statistics

m Mean
1 L
E(E) = EZEW}’I -%=0
i=1

m Covariance

L T
cov(E) = cov (Z (y}}j’ - i))

=1

[ =
= Lcov (3@2’1 — L) (sum of L indep. random matrices)

1
= fcov(ylle -¥)

1
= ZCOV(ny)



Noise statistics

1
cov(E) = ZCOV(ny)

m Represent y as
y = Cz,

where z ~ N(0,1) and ¥ = CCT
m For 02 =0,% = ®I'd"; can take C = oI

m Using properties of Kronecker products:

!

cov(vec(E)) 7

(@ ® ®)(I'2 ®T'2) cov(vec(zz ) (T2 @ '2)(® @ d)T

BERN?xN?



Example: N=3

m Let z = [21, 20, 23] " with z

i (0,1). Then,

Z% Z129 2123

7z = 2122

2 vectorize
zy 2223

Z123 Z2Z%3 Z%




Example: N=3

m The covariance matrix B of vec(zz ') will be of size 9 x 9 with

m For e.g.,
Biq = cov(22,23) =Ez — (Ez3)2=3-1=2

Bio = cov(22, z129) = B2 29 — B2?Fz129 = 0

By 4 = cov(z122,2122) = Ezfz% — Ez 2Bz = 1
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Example: N=3

2000000O0O0O0
01 01000O0O0O
001 0O0O0T1QO0OQO0
01 0100O0O0O

000 0O0O1O0T1FPO0
00100O01O0FO0
000O0O0O1O0T1F®O0
000 O0O0O0OO0OTO02

cov(vec(zz ))=10 0 0 0 2 0 0 0 O

B =



m We now have the following model
r=Ay+e

where

)



Observations

m The noise term vanishes as L — oo

m The noise covariance depends on the parameter to be estimated

m(m+1)
2

B r, P© P and e have redundant entries — restrict to the
distinct entries



New model, Gaussian approximation

m(m+1)

m Pre-multiply (1) by P € R™ 2 xm® formed using a subset of the
rows of I,,2, that picks the relevant entries. Thus,

rp = Apy +ep,

where rp := Pr, Ap := PA, and ep := Pn.

m Further, we approximate the distribution of np by N (0, Wp),
where Wp = PWPT

m Thus, rp ~ N(Ap~vy, Wp)



ML estimation of -

m Denote the ML estimate of v by v,

Y, = aI'g max p(rp;’y), (2)
720
where
1 —(rp — Apy) T Wil(rp — Ayy)
p(rp;y) = ) - ex ( 5 P P .
(2m) =5 i



ML estimation of -

m Simplifying (2), we get

YL = arg;gin log [Wp|+ (rp — AP'Y)TW];l(rP — Apy).
Y2

m To solve (3)

m Initialize v, compute Wp
m Solve (for fixed Wp)

arg min (rp — Apy) Wpl(rp — Ayy)
~¥>0

m Recompute Wp and iterate
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Non-negative quadratic program

mini;l(}ize (rp— Apy) " Wpl(rp — Apy)
7>

Solution (entry-wise update equation for «y):

oy _ o Wt \/’ﬁ +4QTD);(Q~1);
T 2Q D), :

where b= —ALWpy'rp, Q = ALWp ' Ap,

Qi = (@i 1 Qu =0, _[Qu it Q<o
J 0, otherwise, ij = .
0, otherwise.



Support recovery performance

N =40,m = 20, k = 25; exact recovery over 200 trials
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Figure 1: Support recovery performance of the NNQP-based approach; s 3



Support recovery performance

N =70,m = 20, L = 50; exact recovery over 200 trials
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Figure 2: Support recovery performance of the NNQP-based approach, 3



Observations

m Exact support recovery possible for k& < m regime with ‘small’ L

m Form <k <amforsome 1l <a< %, recovery possible with
‘large’ L

m Dependence of computational complexity on parameters
= L: in computing 3 (offline)

m m, N: scales as m*N?



Non negative least squares (NNLS)

m Inner loop in the ML estimation problem

arg>rélin (rp— Apy) " Wpt(rp — Ayy)
>

Note: no sparsity-inducing regularizer

m Canonical NNLS problem

arg min ||y — ®x||3 (NNLS)
x>0

Question: When does (NNLS) return a sparse solution?



Non negative sparse recovery

m Canonical problem
arg min ||x||o
X
st. Px=y, x>0,
where [|x||o: number of non-zero entries in x

Question: Given y € R™ generated by xo € RV that is non
negative and k-sparse, when does (P;") return xo?

N
%]



Uniqueness condition—I

m Let Fi={xeRY:x>0,0x =y} (feasible set for (FP;))
S = {x e RV : ||Ix[jo < k}
If FN S, = {xo} then (P;") returns x.

Theorem

Let xo € RY be a non negative k-sparse vector such that ®xg = y.
Then xg is the only k-sparse x satisfying x > 0 and &x = y if and only
if every v € ker(®)\{0} has at least (k + 1) positive or (k + 1) negative
entries.

m Sufficient to guarantee that (P;") returns the true solution
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Uniqueness condition—I

m Proof

(Sufficiency) Suppose that there exists x” # xg such that x’ > 0,
|x'llo < k and &x' =y.

Then, ®(x’ — x¢) = 0 which implies
v:=x"—xg € ker(®)\{0}.

Since both xg and x’ are non-negative and k-sparse, v has at most
k positive and at most k negative entries, violating the
sign-pattern condition.



m Proof (contd.)

(Necessity) Assume that the sign-pattern condition does not hold.
That is, there exists v € ker(®)\{0} with at most k negative and k
positive entries. We will show that we can find another
non-negative k-sparse vector x’ such that &x’ =y.

Let T := {i € [N] : v; < 0}. If x¢ is of the form

(X())' _ —v;, €T
‘ 0, otherwise,

then x’ = x( + v is a non-negative k-sparse vector satisfying
dx' = dxy.

This contradicts the uniqueness of xg as a non-negative k-sparse
solution of &x =y.



Uniqueness condition—II

m Let = {x € RN : x > 0,0x =y} (feasible set for (P ))
Sk = {x € RN : |Ix|lo < K}
If FF={x¢} then (NNLS) returns xo.

Let xg € RY be a non negative k-sparse vector such that &xo =y.
Then xg is the only x satisfying x > 0 and &x = y if and only if every
v € ker(®)\{0} has at least (k+ 1) positive and (k + 1) negative entries.

m Sufficient to guarantee that (NNLS) returns the true solution
(Any program of the form arg min, - [y — ®x|[, with p > 1 will
work)
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Matrices satisfying uniqueness conditions

Every v € ker(®)\{0} has at least (k + 1) positive or/and (k + 1)
negative entries J

Question: Which matrices satisfy these sign pattern conditions?

m Consider ® such that ||v||o > 2k, Vv € ker(®)\{0}
Then, every v € ker(®)\{0} has at least (k + 1) positive or (k + 1)
negative entries

m Every set of 2k columns of ® € R™*¥ linearly independent
Requires m > 2k

id

Example: ®;; ~ N(0,1)

Are there matrices satisfying the condition when m < 2k?
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An equivalent characterization

m Define

U = {x € RY : x has at most k positive & at most k negative entries}
m Condition I: ker(®) N U = {0}

m Bad event: There exists v € ker(®) such that

doui®i+ Y (—v) (=) =0,

i€T, JET

where T), = {i € [N] : v; > 0}, T), = {i € [N] : v; < 0}, and
Tpl <k, [Tol < k



An equivalent characterization

m Bad event: There exist indices {i1,2,...,42:} C [N] such that

0 € conv(®;,,...,P;,,—P

Tg19 " " ") _(pizk)

m Assume random ® with entries drawn from some distribution P.
For which P is the probability of the above event small?
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Conclusions, Future work

Conclusions

m Sparse support recovery using maximum likelihood based
covariance estimation, no regularization parameter needed

m Support recovery possible even when k£ > m
m Guarantees for non negative sparse recovery
Future work
m Characterization of the uniqueness conditions in terms of N, m, k

m Explore implications of uniqueness conditions for the covariance
estimation problem
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