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Problem setup

Multiple measurement vector model:
Observations {yi}Li=1 are generated from the following linear
model:

yi = Φxi + wi, i ∈ [L],

where Φ ∈ Rm×N (m < N), xi ∈ RN unknown, random and noise
wi

iid∼ N (0, σ2I)

Assumptions:
xi are k-sparse with common support
supp(xi) = T for some T ⊂ [N ] with |T | ≤ k, ∀i ∈ [L]

Non-zero entries uncorrelated
E[xt,ixt,j ] = 0, t ∈ [L], i, j ∈ T

Goal: Recover the common support T given {yi}Li=1, Φ

3 / 31



Problem setup

We impose the following prior on xi

p(xi; γ) =
N∏
j=1

1√
2πγj

exp
(
−

x2
ij

2γj

)

i.e., xi
iid∼ N (0,Γ) where Γ = diag(γ)

Note:
supp(xi) = supp(γ) = T (since γj = 0⇔ xij = 0 a.s.)

yi ∼ N (0,ΦΓΦ> + σ2I︸ ︷︷ ︸
Σ∈Rm×m

)

Equivalent problem: Recover Γ from (an estimate of) Σ
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xi
iid∼ N (0,Γ)

x1 x2 xL Γ

· · ·

yi
iid∼ N (0,Σ)

y1 y2 yL Σ = ΦΓΦ> + σ2I

· · ·
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Support recovery as covariance estimation

We work with the sample covariance matrix Σ̂ = 1
L

∑L
i=1 yiy>i

Express Σ̂ as
Σ̂ = Σ + E,

where E: Noise/Error matrix

Noiseless case (σ2 = 0)
Σ̂ = ΦΓΦ> + Eyvectorize

r = (Φ� Φ)︸ ︷︷ ︸
A∈Rm2×N

γ + e

where � denotes the Khatri-Rao product

We will find the maximum likelihood estimate of γ
For that, we first derive the noise statistics
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Noise statistics

Mean

E(E) = 1
L

L∑
i=1

Eyiy>i − Σ = 0

Covariance

cov(E) = cov
(

L∑
i=1

(
yiy>i
L
− Σ
L

))

= Lcov
(

y1y>1
L
− Σ
L

)
(sum of L indep. random matrices)

= 1
L

cov(y1y>1 − Σ)

= 1
L

cov(yy>)
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Noise statistics

cov(E) = 1
L

cov(yy>)

Represent y as
y = Cz,

where z ∼ N (0, I) and Σ = CC>

For σ2 = 0, Σ = ΦΓΦ>; can take C = ΦΓ
1
2

Using properties of Kronecker products:

cov(vec(E)) = 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 ) cov(vec(zz>))︸ ︷︷ ︸

B∈RN2×N2

(Γ
1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>
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Example: N=3

Let z = [z1, z2, z3]> with zi
iid∼ N (0, 1). Then,

zz> =

 z2
1 z1z2 z1z3

z1z2 z2
2 z2z3

z1z3 z2z3 z2
3

 vectorize−−−−−→



z2
1

z1z2
z1z3
z1z2
z2

2
z2z3
z1z3
z2z3
z2

3


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Example: N=3

The covariance matrix B of vec(zz>) will be of size 9× 9 with
Bi,j ∈ {0, 1, 2}, 1 ≤ i, j ≤ 3.

For e.g.,

B1,1 = cov(z2
1 , z

2
1) = Ez4

1 − (Ez2
1)2 = 3− 1 = 2

B1,2 = cov(z2
1 , z1z2) = Ez3

1z2 − Ez2
1Ez1z2 = 0

B2,4 = cov(z1z2, z1z2) = Ez2
1z

2
2 − Ez1z2Ez1z2 = 1
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Example: N=3

B = cov(vec(zz>)) =



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2


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We now have the following model

r = Aγ + e, (1)

where

A = (Φ� Φ),
E[e] = 0,

cov(e) = W = 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 )B(Γ

1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>.
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Observations

The noise term vanishes as L→∞

The noise covariance depends on the parameter to be estimated

r, Φ� Φ and e have redundant entries – restrict to the m(m+1)
2

distinct entries
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New model, Gaussian approximation

Pre-multiply (1) by P ∈ R
m(m+1)

2 ×m2 , formed using a subset of the
rows of Im2 , that picks the relevant entries. Thus,

rP = APγ + eP ,

where rP := Pr, AP := PA, and eP := Pn.

Further, we approximate the distribution of nP by N (0,WP ),
where WP = PWP>

Thus, rP ∼ N (APγ,WP )
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ML estimation of γ

Denote the ML estimate of γ by γML

γML = arg max
γ≥0

p(rP ; γ), (2)

where

p(rP ; γ) = 1

(2π)
m(m+1)

4 |WP |
1
2

exp
(
−(rP −APγ)>W−1

P (rP −Apγ)
2

)
.
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ML estimation of γ

Simplifying (2), we get

γML = arg min
γ≥0

log |WP |+ (rP −APγ)>W−1
P (rP −Apγ). (3)

To solve (3)
Initialize γ, compute WP

Solve (for fixed WP )

arg min
γ≥0

(rP −AP γ)>W−1
P (rP −Apγ)

Recompute WP and iterate
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Non-negative quadratic program

minimize
γ≥0

(rP −APγ)>W−1
P (rP −Apγ)

Solution (entry-wise update equation for γ):

γ
(i+1)
j = γ

(i)
j

−bj +
√
b2
j + 4(Q+γ(i))j(Q−γ(i))j

2(Q+γ(i))j

 ,
where b = −A>PW

−1
P rP , Q = A>PW

−1
P AP ,

Q+
ij =

{
Qij , if Qij > 0,
0, otherwise, Q−ij =

{
−Qij , if Qij < 0,
0, otherwise.
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Support recovery performance

N = 40,m = 20, k = 25; exact recovery over 200 trials
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Figure 1: Support recovery performance of the NNQP-based approach18 / 31



Support recovery performance

N = 70,m = 20, L = 50; exact recovery over 200 trials
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Figure 2: Support recovery performance of the NNQP-based approach19 / 31



Observations

Exact support recovery possible for k < m regime with ‘small’ L

For m ≤ k ≤ αm for some 1 ≤ α < N
m , recovery possible with

‘large’ L

Dependence of computational complexity on parameters
L: in computing Σ̂ (offline)
m,N : scales as m4N2
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Non negative least squares (NNLS)

Inner loop in the ML estimation problem

arg min
γ≥0

(rP −APγ)>W−1
P (rP −Apγ)

Note: no sparsity-inducing regularizer

Canonical NNLS problem

arg min
x≥0

‖y− Φx‖22 (NNLS)

Question: When does (NNLS) return a sparse solution?
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Non negative sparse recovery

Canonical problem

arg min
x

‖x‖0

s.t. Φx = y, x ≥ 0,
(P+

0 )

where ‖x‖0: number of non-zero entries in x

Question: Given y ∈ Rm generated by x0 ∈ RN that is non
negative and k-sparse, when does (P+

0 ) return x0?

22 / 31



Uniqueness condition–I

Let F := {x ∈ RN : x ≥ 0,Φx = y} (feasible set for (P+
0 ))

Sk := {x ∈ RN : ‖x‖0 ≤ k}
If F ∩ Sk = {x0} then (P+

0 ) returns x0.

Theorem
Let x0 ∈ RN be a non negative k-sparse vector such that Φx0 = y.
Then x0 is the only k-sparse x satisfying x ≥ 0 and Φx = y if and only
if every v ∈ ker(Φ)\{0} has at least (k + 1) positive or (k + 1) negative
entries.

Sufficient to guarantee that (P+
0 ) returns the true solution
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Uniqueness condition–I

Proof

(Sufficiency) Suppose that there exists x′ 6= x0 such that x′ ≥ 0,
‖x′‖0 ≤ k and Φx′ = y.

Then, Φ(x′ − x0) = 0 which implies

v := x′ − x0 ∈ ker(Φ)\{0}.

Since both x0 and x′ are non-negative and k-sparse, v has at most
k positive and at most k negative entries, violating the
sign-pattern condition.
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Proof (contd.)

(Necessity) Assume that the sign-pattern condition does not hold.
That is, there exists v ∈ ker(Φ)\{0} with at most k negative and k
positive entries. We will show that we can find another
non-negative k-sparse vector x′ such that Φx′ = y.

Let T := {i ∈ [N ] : vi < 0}. If x0 is of the form

(x0)i =
{
−vi, i ∈ T
0, otherwise,

then x′ = x0 + v is a non-negative k-sparse vector satisfying
Φx′ = Φx0.

This contradicts the uniqueness of x0 as a non-negative k-sparse
solution of Φx = y.
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Uniqueness condition–II

Let F := {x ∈ RN : x ≥ 0,Φx = y} (feasible set for (P+
0 ))

Sk := {x ∈ RN : ‖x‖0 ≤ k}
If F = {x0} then (NNLS) returns x0.

Theorem
Let x0 ∈ RN be a non negative k-sparse vector such that Φx0 = y.
Then x0 is the only x satisfying x ≥ 0 and Φx = y if and only if every
v ∈ ker(Φ)\{0} has at least (k+ 1) positive and (k+ 1) negative entries.

Sufficient to guarantee that (NNLS) returns the true solution
(Any program of the form arg minx≥0 ‖y− Φx‖p with p ≥ 1 will
work)
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Matrices satisfying uniqueness conditions

Every v ∈ ker(Φ)\{0} has at least (k + 1) positive or/and (k + 1)
negative entries

Question: Which matrices satisfy these sign pattern conditions?

Consider Φ such that ‖v‖0 > 2k, ∀v ∈ ker(Φ)\{0}
Then, every v ∈ ker(Φ)\{0} has at least (k + 1) positive or (k + 1)
negative entries

Every set of 2k columns of Φ ∈ Rm×N linearly independent
Requires m ≥ 2k
Example: Φij

iid∼ N (0, 1)

Are there matrices satisfying the condition when m < 2k?
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An equivalent characterization

Define

U = {x ∈ RN : x has at most k positive & at most k negative entries}

Condition I: ker(Φ) ∩ U = {0}

Bad event: There exists v ∈ ker(Φ) such that∑
i∈Tp

viΦi +
∑
j∈Tn

(−vj)(−Φj) = 0,

where Tp = {i ∈ [N ] : vi > 0}, Tn = {i ∈ [N ] : vi < 0}, and
|Tp| ≤ k, |Tn| ≤ k
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An equivalent characterization

Bad event: There exist indices {i1, i2, . . . , i2k} ⊂ [N ] such that

0 ∈ conv(Φi1 , . . . ,Φik ,−Φik+1 , . . . ,−Φi2k
)

Assume random Φ with entries drawn from some distribution P .
For which P is the probability of the above event small?
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Conclusions, Future work

Conclusions
Sparse support recovery using maximum likelihood based
covariance estimation, no regularization parameter needed

Support recovery possible even when k > m

Guarantees for non negative sparse recovery

Future work
Characterization of the uniqueness conditions in terms of N , m, k

Explore implications of uniqueness conditions for the covariance
estimation problem
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Thank you
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