Matrix Perturbation: Theory and Applications

Lekshmi Ramesh

Indian Institute of Science Bangalore

07 October 2017

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Outline

- Matrix perturbation
 - Introduction
 - Applications (PCA, Clustering in networks)

- Clustering: more details
- Perturbation theory
 - Weyl's inequality
 - The Davis-Kahan theorem, Proof
- Guarantees for spectral clustering

Matrix perturbation

- Matrix perturbation theory tries to characterize the effect of an unknown perturbation on certain properties of a matrix
- For $A, E \in \mathbb{R}^{n \times n}$:
 - how are the eigenvalues of A and A + E related?
 - how are the eigenvectors of A and A + E related?
 - other questions..
- Perturbation theory is useful for analysing algorithms that are based on eigenvalue/eigenvector computations. We will see two examples
 - Principal Components Analysis
 - Spectral clustering in networks

Matrix perturbation: an example

• Let
$$A = \begin{bmatrix} 1 - \epsilon & 0 \\ 0 & 1 + \epsilon \end{bmatrix}$$

eigenvalues: $\{1 - \epsilon, 1 + \epsilon\}$ eigenvectors: $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$
• Let $\hat{A} = A + \begin{bmatrix} \epsilon & \epsilon \\ \epsilon & -\epsilon \end{bmatrix} = \begin{bmatrix} 1 & \epsilon \\ \epsilon & 1 \end{bmatrix}$
eigenvalues: $\{1 - \epsilon, 1 + \epsilon\}$ eigenvectors: $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$

- Perturbation caused a large rotation of eigenvectors
- Can guarantee eigenvectors of A and \hat{A} are "close" under restrictions on eigenvalues of A

Applications

Principal Components Analysis

- given n data points X_1, \ldots, X_n in \mathbb{R}^d , find a lower dimensional subspace that best fits the data
- optimal subspace determined by leading eigenvectors of covariance matrix of data
- how far are the corresponding eigenvectors of the population covariance matrix and sample covariance matrix?

Spectral clustering in networks

- given a graph G = (V, E), partition its vertices into clusters
- under a certain generative model, the second leading eigenvector of the *expected* adjacency matrix gives cluster labels
- how far are the second leading eigenvectors of the adjacency matrix and the expected adjacency matrix?

Clustering in networks: introduction

- The network is represented as a graph G = (V, E)
- \blacksquare We want to partition the vertex set V into clusters such that
 - there are many edges within a cluster
 - there are few edges across clusters

 Stochastic Block Model (SBM): A generative model for graphs with clusters

Two-cluster case

For $n \in \mathbb{N}$ and $p, q \in (0, 1)$, let $\mathcal{G}(n, p, q)$ be the class of random graphs where

- each vertex v is assigned a label $\sigma_v \in \{+1, -1\}$ (independently and uniformly at random)
- each possible edge (u, v) is included with probability p if $\sigma_u = \sigma_v$ and with probability q if $\sigma_u \neq \sigma_v$

Clustering in networks

Figure 1: A random graph $G \sim \mathcal{G}(200, \frac{1}{20}, \frac{1}{200})$

(ロ)、(型)、(目)、(目)、(目)、(Q)、 8/21

Clustering in networks: spectral algorithm

- Let $G \sim \mathcal{G}(n, p, q)$ and A be the adjacency matrix of G. The expected adjacency matrix $D := \mathbb{E}A$ has a block structure (after reordering rows and columns)
- For example, with n = 4:

$$D = \begin{bmatrix} p & p & q & q \\ p & p & q & q \\ q & q & p & p \\ q & q & p & p \end{bmatrix}$$

Eigenvalues of D: $\lambda_1^{\rm D} = 2(p+q), \quad \lambda_2^{\rm D} = 2(p-q)$ Corresponding eigenvectors: $v_1^{\rm D} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, v_2^{\rm D} = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$

- Eigenvector corresponding to second largest eigenvalue of D gives vertex labelings
- But we only have access to A. We will see that v₂^D and v₂^A are close under some conditions on the spectrum of D

• Weyl's inequality gives a characterization of the maximum deviation caused in eigenvalues by an additive perturbation

Let A and B be $n \times n$ symmetric matrices. Then,

$$\max_{i} |\lambda_i^A - \lambda_i^B| \le ||A - B||.$$

Davis-Kahan theorem

Some notation:

- A and B are symmetric $n \times n$ matrices and E = B A
- $\lambda_1^A \ge \ldots \ge \lambda_n^A$ are the eigenvalues of A with corresponding eigenvectors v_1^A, \ldots, v_n^A
- $\lambda_1^B \ge \ldots \ge \lambda_n^B$ be the eigenvalues of B with corresponding eigenvectors v_1^B, \ldots, v_n^B
- θ_i is the angle between the lines through v_i^A and v_i^B

The Davis-Kahan theorem states that

$$\sin \theta_i \le \frac{2\|E\|}{\min_{j \ne i} |\lambda_i^A - \lambda_j^A|}.$$

Proof

Consider "shifted" versions $A - \lambda_i^A I$ and $B - \lambda_i^A I$ (does not affect the eigenvectors)

• After shifting,
$$\lambda_i^A = 0$$
. Also,

$$||E|| = ||B - A|| \ge |\lambda_i^B|$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

13/21

Assume all eigenvectors are of unit length

Davis-Kahan theorem

• Expand v_i^B in the eigenbasis for A

$$v_i^B = \sum_j c_j v_j^A,$$

where
$$c_j = \langle v_j^A, v_j^B \rangle$$

• $\delta := \min_{j \neq i} |\lambda_j^A|$

■ Then,

$$\|Av_i^B\|_2^2 = \sum_j c_j^2 (\lambda_j^A)^2$$

$$\geq \sum_{j \neq i} c_j^2 \delta^2$$

$$= \delta^2 (1 - c_i^2)$$

$$= \delta^2 \sin^2 \theta_i \tag{1}$$

\blacksquare Also,

$$\|Av_{i}^{B}\|_{2} = \|(B - E)v_{i}^{B}\|_{2}$$

$$\leq \|Bv_{i}^{B}\|_{2} + \|Ev_{i}^{B}\|_{2}$$

$$= \lambda_{i}^{B} + \|Ev_{i}^{B}\|_{2}$$

$$\leq 2\|E\|$$

(2)

15 / 21

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

■ Using (1) and (2)

 $\sin \theta_i \leq \frac{2\|E\|}{\delta}$

• We can also show that

$$\sin \theta_i \le \frac{2\|E\|}{\delta}$$

implies that there exists $\alpha \in \{-1, +1\}$ such that

$$\|v_i^A - \alpha v_i^B\|_2 \le \frac{2\sqrt{2}\|E\|}{\delta}.$$

That is, v_i^A and v_i^B are close up to sign.

- Recall: $G \sim \mathcal{G}(n, p, q)$ with adjacency matrix A and $D = \mathbb{E}A$ ■ We want $sgn(v_2^A) \approx sgn(v_2^D)$
- Using the Davis-Kahan theorem,

$$\|v_i^A - \alpha v_i^D\|_2 \le \frac{2\sqrt{2}\|A - D\|}{\delta}$$

• Computing δ :

$$\delta = \min\left(\frac{p-q}{2}, q\right)n =: \mu n$$

• Using concentration results, we can show that

 $||A - D|| \le c\sqrt{n}$

with probability at least $1 - 4e^{-n}$

And so,

$$\|v_i^A - \alpha v_i^D\|_2 \le \frac{c}{\mu\sqrt{n}}$$

with probability at least $1 - 4e^{-n}$

• Can show: #{indices where signs disagree} $\leq ||v_i^A - \alpha v_i^D||_2^2 \leq \frac{c}{\mu^2}$

4 ロ ・ 4 部 ・ 4 書 ・ 4 書 ・ 書 の Q で
18 / 21

• We thus have the following result:

Let $G \sim \mathcal{G}(n, p, q)$ with p > q and $\mu = \min(q, p - q)$. Then, with probability at least $1 - 4e^{-n}$, the spectral clustering algorithm identifies the communities of G upto $\frac{c}{\mu^2}$ misclassified vertices.

References

McSherry, Frank. "Spectral Partitioning of Random Graphs". In: FOCS. 2001, pp. 529–537.
Roughgarden, Tim. Lecture notes CS264. Stanford University. 2014.

Thank you

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 21 / 21