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Matrix perturbation

m Matrix perturbation theory tries to characterize the effect of an
unknown perturbation on certain properties of a matrix

m For A, F € R"*™:

m how are the eigenvalues of A and A + E related?
m how are the eigenvectors of A and A + F related?
m other questions..

m Perturbation theory is useful for analysing algorithms that are
based on eigenvalue/eigenvector computations. We will see two
examples

m Principal Components Analysis
m Spectral clustering in networks



Matrix perturbation: an example
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m Perturbation caused a large rotation of eigenvectors

m Can guarantee eigenvectors of A and A are “close” under
restrictions on eigenvalues of A



Applications

m Principal Components Analysis
m given n data points X1,..., X, in R, find a lower dimensional
subspace that best fits the data

m optimal subspace determined by leading eigenvectors of covariance
matrix of data

m how far are the corresponding eigenvectors of the population
covariance matrix and sample covariance matrix?

m Spectral clustering in networks

m given a graph G = (V, E), partition its vertices into clusters

m under a certain generative model, the second leading eigenvector of
the expected adjacency matrix gives cluster labels

m how far are the second leading eigenvectors of the adjacency matrix
and the expected adjacency matrix?



Clustering in networks: introduction

m The network is represented as a graph G = (V, E)
m We want to partition the vertex set V into clusters such that

m there are many edges within a cluster
m there are few edges across clusters
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Clustering in networks: the stochastic block model

m Stochastic Block Model (SBM): A generative model for graphs
with clusters

m Two-cluster case
For n € N and p,q € (0,1), let G(n,p, q) be the class of random
graphs where
m each vertex v is assigned a label o, € {+1,—1} (independently and
uniformly at random)
m cach possible edge (u,v) is included with probability p if o, = o
and with probability ¢ if o, # o,



Clustering in networks

Figure 1: A random graph G ~ G(200
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Clustering in networks: spectral algorithm

m Let G ~ G(n,p,q) and A be the adjacency matrix of G. The
expected adjacency matrix D := EA has a block structure (after
reordering rows and columns)

m For example, with n = 4:

P pP g q

pD_|P P ad

q g p p

q9 9 p p

m Eigenvalues of D: P=2(p+¢q), A =2(p—q)

1 1
. . b 1l 5 1
Corresponding eigenvectors: vy = =1
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Clustering in networks: spectral algorithm

m Eigenvector corresponding to second largest eigenvalue of D gives
vertex labelings

m But we only have access to A. We will see that v5 and v5 are close
under some conditions on the spectrum of D

10 /21



Weyl’s inequality

m Weyl’s inequality gives a characterization of the maximum
deviation caused in eigenvalues by an additive perturbation

Let A and B be n x n symmetric matrices. Then,

max |A\!! = AP| < |4~ BJ|.
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Davis-Kahan theorem

Some notation:
m A and B are symmetric n X n matricesand E =B — A

n )\‘14 > ... > )x;? are the eigenvalues of A with corresponding

eigenvectors vf‘, . ,fu;?
m AP > ... > A5 be the eigenvalues of B with corresponding
eigenvectors le, . ,vf

m 0; is the angle between the lines through v;* and v/
The Davis-Kahan theorem states that
2| E|

sin 91 <



Davis-Kahan theorem

Proof

m Consider “shifted” versions A — AT and B — AT (does not affect
the eigenvectors)

m After shifting, )\;4 = 0. Also,
IE| =B = Al = A7

m Assume all eigenvectors are of unit length



Davis-Kahan theorem

» Expand v? in the eigenbasis for A
B A
vl =6y

J

Ao

where ¢; = (v
m 0 :=minjy |)\3-4|

m Then,

14715 =D 5 (Ah?

J
> 203(52

JFi
— 21— )
= §%sin? 0,



m Also,

1407 |l = (B — E)o |12
< |1Bv ||z + [ Bof |12

=X+ 1B 2

<2|E| (2)
m Using (1) and (2)

sing; < 2IE1

o



m We can also show that

2| B
g, < 2121

implies that there exists a € {—1,+1} such that

A B

2v3| B
o = avflly < 5L

That is, v/ and v? are close upto sign.
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Spectral clustering

Recall: G ~ G(n,p,q) with adjacency matrix A and D = EA

We want sgn(UQA) ~ Sgn(U2D)

Using the Davis-Kahan theorem,

A D 2v2||A - D
2 < —

lvi — av;

Computing 9:




m Using concentration results, we can show that
|A - DI <cvn
with probability at least 1 — 4e™"

m And so,

A D c
v — av;[]2 <

py/n

with probability at least 1 — 4e™"

m Can show:
#{indices where signs disagree} < |[v! — avP|3 < /TCQ



m We thus have the following result:

Let G ~ G(n,p,q) with p > ¢ and p = min(g,p — q). Then, with
probability at least 1 — 4e™", the spectral clustering algorithm
identifies the communities of G upto /702 misclassified vertices.
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