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Matrix perturbation

Matrix perturbation theory tries to characterize the effect of an
unknown perturbation on certain properties of a matrix

For A,E ∈ Rn×n:
how are the eigenvalues of A and A+ E related?
how are the eigenvectors of A and A+ E related?
other questions..

Perturbation theory is useful for analysing algorithms that are
based on eigenvalue/eigenvector computations. We will see two
examples

Principal Components Analysis
Spectral clustering in networks
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Matrix perturbation: an example

Let A =
[
1− ε 0

0 1 + ε

]

eigenvalues: {1− ε, 1 + ε} eigenvectors:
{[

1
0

]
,

[
0
1

]}

Let Â = A+
[
ε ε
ε −ε

]
=
[
1 ε
ε 1

]

eigenvalues: {1− ε, 1 + ε} eigenvectors:
{[

1
−1

]
,

[
1
1

]}
Perturbation caused a large rotation of eigenvectors
Can guarantee eigenvectors of A and Â are “close” under
restrictions on eigenvalues of A
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Applications

Principal Components Analysis
given n data points X1, . . . , Xn in Rd, find a lower dimensional
subspace that best fits the data

optimal subspace determined by leading eigenvectors of covariance
matrix of data

how far are the corresponding eigenvectors of the population
covariance matrix and sample covariance matrix?

Spectral clustering in networks
given a graph G = (V,E), partition its vertices into clusters

under a certain generative model, the second leading eigenvector of
the expected adjacency matrix gives cluster labels

how far are the second leading eigenvectors of the adjacency matrix
and the expected adjacency matrix?
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Clustering in networks: introduction

The network is represented as a graph G = (V,E)
We want to partition the vertex set V into clusters such that

there are many edges within a cluster
there are few edges across clusters
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Clustering in networks: the stochastic block model

Stochastic Block Model (SBM): A generative model for graphs
with clusters

Two-cluster case
For n ∈ N and p, q ∈ (0, 1), let G(n, p, q) be the class of random
graphs where

each vertex v is assigned a label σv ∈ {+1,−1} (independently and
uniformly at random)
each possible edge (u, v) is included with probability p if σu = σv

and with probability q if σu 6= σv

7 / 21



Clustering in networks

Figure 1: A random graph G ∼ G(200, 1
20 ,

1
200 )
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Clustering in networks: spectral algorithm

Let G ∼ G(n, p, q) and A be the adjacency matrix of G. The
expected adjacency matrix D := EA has a block structure (after
reordering rows and columns)
For example, with n = 4:

D =


p p q q
p p q q
q q p p
q q p p


Eigenvalues of D: λD

1 = 2(p+ q), λD
2 = 2(p− q)

Corresponding eigenvectors: vD
1 =


1
1
1
1

, vD
2 =


1
1
−1
−1
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Clustering in networks: spectral algorithm

Eigenvector corresponding to second largest eigenvalue of D gives
vertex labelings
But we only have access to A. We will see that vD

2 and vA
2 are close

under some conditions on the spectrum of D
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Weyl’s inequality

Weyl’s inequality gives a characterization of the maximum
deviation caused in eigenvalues by an additive perturbation

Let A and B be n× n symmetric matrices. Then,

max
i
|λAi − λBi | ≤ ‖A−B‖.
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Davis-Kahan theorem

Some notation:
A and B are symmetric n× n matrices and E = B −A
λA1 ≥ . . . ≥ λAn are the eigenvalues of A with corresponding
eigenvectors vA1 , . . . , vAn
λB1 ≥ . . . ≥ λBn be the eigenvalues of B with corresponding
eigenvectors vB1 , . . . , vBn
θi is the angle between the lines through vAi and vBi

The Davis-Kahan theorem states that

sin θi ≤
2‖E‖

minj 6=i |λAi − λAj |
.
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Davis-Kahan theorem

Proof

Consider “shifted” versions A− λAi I and B − λAi I (does not affect
the eigenvectors)

After shifting, λAi = 0. Also,

‖E‖ = ‖B −A‖ ≥ |λBi |

Assume all eigenvectors are of unit length
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Davis-Kahan theorem

Expand vBi in the eigenbasis for A

vBi =
∑
j

cjv
A
j ,

where cj = 〈vAj , vBj 〉

δ := minj 6=i |λAj |

Then,

‖AvBi ‖22 =
∑
j

c2
j (λAj )2

≥
∑
j 6=i

c2
jδ

2

= δ2(1− c2
i )

= δ2 sin2 θi (1)
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Also,

‖AvBi ‖2 = ‖(B − E)vBi ‖2
≤ ‖BvBi ‖2 + ‖EvBi ‖2
= λBi + ‖EvBi ‖2
≤ 2‖E‖ (2)

Using (1) and (2)

sin θi ≤
2‖E‖
δ
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We can also show that

sin θi ≤
2‖E‖
δ

implies that there exists α ∈ {−1,+1} such that

‖vAi − αvBi ‖2 ≤
2
√

2‖E‖
δ

.

That is, vAi and vBi are close upto sign.

16 / 21



Spectral clustering

Recall: G ∼ G(n, p, q) with adjacency matrix A and D = EA
We want sgn(vA2 ) ≈ sgn(vD2 )
Using the Davis-Kahan theorem,

‖vAi − αvDi ‖2 ≤
2
√

2‖A−D‖
δ

Computing δ:
δ = min

(p− q
2 , q

)
n =: µn
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Using concentration results, we can show that

‖A−D‖ ≤ c
√
n

with probability at least 1− 4e−n

And so,
‖vAi − αvDi ‖2 ≤

c

µ
√
n

with probability at least 1− 4e−n

Can show:
#{indices where signs disagree} ≤ ‖vAi − αvDi ‖22 ≤ c

µ2
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We thus have the following result:
Let G ∼ G(n, p, q) with p > q and µ = min(q, p− q). Then, with
probability at least 1− 4e−n, the spectral clustering algorithm
identifies the communities of G upto c

µ2 misclassified vertices.
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Thank you
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