

EED using OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas Efficient Energy Detection in Decentralized Sensor Networks using Ordered Transmissions - A Life Testing Approach

> Sanjeev G. SPC Lab., Dept. of ECE, IISc

03 August 2012

(ロ) (同) (三) (三) (三) (○) (○)

System Model and Assumptions (1/2)

EED using OSD Sanjeev 3rd Aug '12

Introduction

Life Testing Lemmas • *N* sensors with *M* observations each. Hypothesis testing at each sensor

$$\begin{aligned} \mathcal{H}_0: Y_i &= s_i + n_i \sim \mathcal{CN}(0, \sigma_s^2 + \sigma_n^2) \\ \mathcal{H}_1: Y_i &= n_i \sim \mathcal{CN}(0, \sigma_n^2), \\ &i \in \{1, 2 \cdots, M\} \end{aligned}$$
 (1)

• Energy Detection (ED) is optimal. Let

$$E_{j} \triangleq \frac{1}{M} \sum_{i=1}^{M} |Y_{i}|^{2}, \quad j = 1, 2, \cdots, N$$
 (2)

(ロ) (日) (日) (日) (日) (日) (日) (日)

No fading
 σ²_s is known

System Model and Assumptions (2/2)

EED using OSD Sanjeev 3rd Aug '12

Introduction

Life Testing

Lemmas

Future Work

$$\mathcal{H}_{0}: E_{j} \sim \Gamma_{D}\left(M, \frac{2(\sigma_{s}^{2} + \sigma_{n}^{2})}{M}\right)$$
$$\mathcal{H}_{1}: E_{j} \sim \Gamma_{D}\left(M, \frac{2\sigma_{n}^{2}}{M}\right)$$
(3)

- Each sensor calculates its E_j and transmits it after time $T_i = KE_j$ units. Therefore, E_j s arrive at the FC in order
- Let $E_{(j)}$ represent the jth ordered statistic i.e., $E_{(1)} \leq E_{(2)} \leq \cdots \leq E_{(N)}$
- Goal : Efficient ED using observations *E*_(*j*) from only r-out-of-N sensors.
- Therefore, efficiency ⇒ saving in number of transmissions

Existing "efficient" techniques

OSD Sanjeev 3rd Aug '12

Introduction

Life Testing

Lemmas

Future Work

- Censoring sensors scheme
- Sadler and Blum's scheme

In this work...

EED using OSD Sanjeev 3rd Aug '12

Introduction

- Life Testing Lemmas
- Future Work

- We present a new scheme based on an approach used in life testing
- For no fading, known σ_n^2 , and σ_s^2 cases, an expression for r_{opt} is given, which satisfies $P_D = 1 \beta$, and $P_F \le \alpha$, simultaneously
- We generalize some of the existing results (for exponential case) in life testing, for gamma distributions

(ロ) (日) (日) (日) (日) (日) (日) (日)

Life Testing

FFD using
LLD dailing
OSD
Sanjeev
3rd Aug '12
ora Aug 12
Introduction
milloudction
Life Testing
Life resting
Lemmas
Enderson Manuals
Future work

Joint PDF lemma

OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas Future Work

The joint PDF of first r ordered statistics of
$$T_j$$
 is given by

$$f_{T,r}(t_{(1)}, \cdots, t_{(r)}) = \frac{N!}{(N-r)!} \begin{cases} \frac{\left(\prod_{j=1}^r t_{(j)}\right)^{M-1}}{\left(\frac{\mathscr{D}\sigma^2}{M}\right)^M} \Gamma(M) \\ \frac{\mathscr{D}\sigma^2}{\mathscr{D}\sigma^2} \sum_{j=1}^r \frac{1}{t_{(j)}} \end{cases} \end{cases}^r \left(1 - \frac{\Gamma\left(M, \frac{M}{\mathscr{D}(r)\sigma^2}\right)}{\Gamma M}\right)^{N-r}$$
(4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\sigma^2 = \sigma_n^2$ under \mathcal{H}_1 and $\sigma^2 = \sigma_n^2 + \sigma_s^2$, under \mathcal{H}_0 .

Maximum Likelihood Estimate

EED using OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas Future Work

Lemma

The MLE of σ^2 from $T_{(1)}, \dots, T_{(r)}$ is given by the value of σ^2 which satisfies

$$\frac{(N-r)t_{(r)}^{M}}{\Gamma(M)\left(\frac{\sigma^{2}}{M}\right)^{M-1}\sum_{m=0}^{M-1}\frac{1}{m!}\left(\frac{Mt_{(r)}}{\sigma^{2}}\right)^{m}} + \sum_{j=1}^{r}t_{(j)} - r.\sigma^{2} = 0 \quad (5)$$

- Denote the solution to above equation as $\hat{\sigma}_{r,N}^2$
- The detection strategy : $\hat{\sigma}_{r,N}^2 \ge \tau$
- For *M* = 1, the result rolls back to exponential case, for which
 *σ*²_{*r*,N} is an efficient estimate of *σ*²_{*r*,N}, and is a sufficient statistic for ED

A Conjecture

EED using OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas Future Work

Conjecture

The statistic $\hat{\sigma}_{r,N}^2$ has the same distribution as $\hat{\sigma}_{r,r}^2$ i.e.,

$$\widehat{\sigma}_{r,N}^2 \sim \Gamma_D\left(rM, \frac{\sigma^2}{rM}\right)$$
 (6)

(日)

• $\sigma^2 = \sigma_n^2$ under \mathcal{H}_1 and $\sigma^2 = \sigma_n^2 + \sigma_s^2$, under \mathcal{H}_0 .

Choosing the *r*opt

Lemma

EED using OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas Future Work When both σ_s^2 and σ_n^2 are known, the detector $\hat{\sigma}_{r,N}^2 \ge \tau$ meets the criteria

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・
 </p

(a) $P_D \triangleq \mathcal{P}{H_0|H_0} = 1 - \beta$, and

(b) $P_F \triangleq \mathcal{P}{H_0|H_1} \le \alpha$, when τ and r are chosen such that

(i)
$$\tau = (\sigma_s^2 + \sigma_n^2)\gamma_{inc}^{-1}(\beta, rM, \frac{1}{rM})$$
, and
(ii) $\frac{\gamma_{inc}^{-1}(\beta, rM, \frac{1}{rM})}{\gamma_{inc}^{-1}(1 - \alpha, rM, \frac{1}{rM})} \ge \frac{\sigma_n^2}{\sigma_s^2 + \sigma_n^2}$

EED using OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas Future Work

Proof.

• Following the conjecture, $\hat{\sigma}_{r,N}^2 \sim \Gamma_D(rM, \frac{1}{rM})$, $\Rightarrow \frac{\widehat{\sigma}_{r,N}^2}{\sigma^2} \triangleq W \sim \Gamma_D\left(rM, \frac{1}{rM}\right).$ • Need $P_D = \mathcal{P}\{\widehat{\sigma}_{r,N}^2 > \tau | \sigma^2 = \sigma_s^2 + \sigma_n^2\} =$ $\mathcal{P}\left\{W > \frac{\tau}{\sigma^2 + \sigma^2}\right\} = 1 - \beta.$ Taking the inverse, we get the expression for τ • Need $P_F = \mathcal{P}\{\widehat{\sigma}_{r,N}^2 > \tau | \sigma^2 = \sigma_n^2\} = \mathcal{P}\left\{W > \frac{\tau}{\sigma^2}\right\} \le \alpha$ $\Rightarrow \mathcal{P}\left\{W \leq \frac{\tau}{\sigma_{2}^{2}}\right\} \geq 1 - \alpha$ Taking the inverse, $\frac{\tau}{\sigma_{e}^{2}} \geq \gamma_{inc}^{-1} \left(1 - \alpha, rM, \frac{1}{rM}\right)$ Substituting for τ gives the condition to choose r_{opt}

Future Work

EED using OSD Sanjeev 3rd Aug '12

Introduction Life Testing Lemmas

- Comparison with Censoring sensors, and Sadler-Blum schemes
- A suboptimal test : $t_{(r)} \ge \tau_1$
- Extension of the test to the general ED problem [Urkowitz67]

$$\begin{aligned} \mathcal{H}_0 : E_j &\sim \chi^2_{2M}(2\rho) \\ \mathcal{H}_1 : E_j &\sim \chi^2_{2M}(0) \end{aligned}$$

(ロ) (日) (日) (日) (日) (日) (日) (日)

A sequential version of the test