Journal Watch: IEEE Transactions on Signal Processing, Vol. 59 No. 3, March. 2011

Parthajit Mohapatra

Signal Processing for communication Lab.

Department of ECE, IISc

12 February, 2011

イロト イヨト イヨト イヨト

Diversity Gain for MIMO Neyman-Pearson Signal Detection

Authors: Q. He and Rick S. Blum

Affiliations: **Q. He**: Electronic Engineering Department, University of Electronic Science and Technology of China, China**Rick S. Blum**: Electrical and Computer Engineering Department, Lehigh University, USA

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

- For MIMO system adopting NP criterion, diversity gain is derived for a vector signal present versus signal absent hypothesis testing problem
- Also analyzed the scenario when the target composed of Q random scatterers with possibly non-Gaussian reflection coefficients in the presence of possibly non-Gaussian clutter-plus noise

$$H_1: \mathbf{r} = \sqrt{\gamma} \mathbf{B} \eta + \mathbf{W}$$

 $H_0: \mathbf{r} = \mathbf{W}$

- Optimum detector is developed for Gaussian case
- Diversity gain in case of both Gaussian and non-Gaussian signal vector is derived

• Noise Enhanced *M*-ary Composite Hypothesis-Testing in the Presence of Partial Prior Information

Authors: S. Bayram and S. Gezici Affiliations: Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara, Turkey

イロン イヨン イヨン イヨン

 Noise enhanced detection is studied for *M*-ary composite hypothesis-testing problems in the presence of partial prior information

- Optimal additive noise is obtained according to two criterion:
 - uniform distribution
 - 2 least-favorable distribution

A B > A B >

< 注→ 注

- It is shown that optimal noise can be represented by a constant signal level or by a randomization of a finite number of signal levels according to Criterion 1 and 2.
- Cases of unknown parameter distribution under some composite hypotheses are considered

・ 同 ト ・ ヨ ト ・ ヨ ト …

Optimal Wideband Spectrum Sensing Framework for Cognitive Radio Systems

Authors:P. Paysarvi-Hoseini and N. C. Beaulieu Affiliations: iCORE Wireless Communications Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Canada

- An optimal framework for wideband Spectrum Sensing (SS) termed as Multiband Sensing-time-adaptive Joint Detection (MSJD)
- Wideband channel is divided in to N non-overlapping narrowband subchannels and J numbers of primary share this spectrum
- Goal is to jointly identifying the underutilized subbands
- There are two important aspects:

Secondary capacity throughput for CR users

Interference protection for primary networks

<ロ> <同> <同> < 回> < 回> < 回> = 三

- Objective is to find the detection thresholds {∈_k}^N_{k=1} and sensing time *τ* to optimize the performance of the secondary network while protecting the primary intrest
- The proposed scheme makes efficient use of the spectrum by establishing a suitable tradeoff between secondary user access and primary network protection

イロン イヨン イヨン イヨン

 Closed-Form Error Exponent for the NeymanâPearson Fusion of Dependent Local Decisions in a One-Dimensional Sensor Network

Authors: Jorge Plata-Chaves and Marcelino Lázaro Affiliations: Signal Theory and Communications Department, Universidad Carlos III de Madrid, Spain

< ロ > < 同 > < 臣 > < 臣 > -

 A distributed detection system is considered where a large number of sensors perform a local detection and the FC performs a NP - fusion of the binary sensor observations

イロト イヨト イヨト イヨト

- The correlation structure of the local decesion is modeled with a 1 - D MRF
- A closed form expression for error exponent for NP fusion of the local decesions is derived
- A phisical model for the conditional probability of MRF is developed
- Using this model, the error exponent is charcterized for the following sensor spacing model

equispaced sensors with failures

exponentially spaced sensors with failures

イロン イヨン イヨン -

Linear Precoders for the Detection of a Gaussian Process in Wireless Sensors Networks

Authors:P. Bianchi, Member, J. Jakubowicz, and F. Roueff Affiliations:Institut Telecom/Telecom ParisTech/CNRS LTCI, France

- Performance of NeymanâPearson detection of a stationary Gaussian process in noise is analyzed, using a large WSN
- Each sensor compresses its observations using a linear precoder and final decesion is taken by FC
- Two family of precoders are studied:
 - i.i.d. precoders
 - orthogonal precoders
- Performance is analyzed under a regime where $k, n \rightarrow \infty$ s.t $\frac{k}{n} \rightarrow c \in [0, 1]$

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト … 臣

- For the considered precoders, it is shown that the miss prob. of NP detector converges exponentially to zero
- Closed form expression of the corresponding error exponents are derived
- Proposed a practical orthogonal precoding strategy which achives best error exponent among all orthogonal strategy