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Introduction

� High resolution array processing - radar, radio astronomy, radio

communications.

� Point target assumption is an approximation.

� Target possesses a spatial extent over a continuum of direction

of arrivals (DoAs).
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System Model

� Mt Tx antennas, spacing ∆t ;

Mr Rx antennas, spacing ∆r .

� Nd Doppler bins, Nr range bins, Na angular bins.

� si ∈ CL×1: waveform transmitted by the ith Tx antenna.

� For the dth Doppler bin

si (ωd) = si � [1, e jωd , . . . , e j(L−1)ωd ]T ,
Sd = [s1(ωd) s2(ωd) · · · sMt (ωd)]T .
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System Model

� x
(k,p)
d ,r (θ): complex angular weighting function of the kth
source in direction θ for the radar sweep index p, dth Doppler

bin, r th range bin.

� a(θ): Tx steering vector, b(θ): Rx steering vector.

� Received signal Y(p) ∈ CMr×(L+Nr−1):

Y(p) =∑Nd
d=1

∑Nr
r=1

∑K
k=1

∫
θ∈Θk
{x (k,p)

d ,r (θ)b(θ)aT (θ)dθ}S̃dJr + W(p),

� S̃d = [Sd 0Mt×Nr−1] Jr =


r︷ ︸︸ ︷

0 . . . 01 0
. . .

1

0

.
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System Model

� Y(p) =
∑Nd

d=1

∑Nr
r=1

∑Na
a=1 x

(p)
d ,r ,ab(θa)aT (θa)S̃dJr + W(p).

[Approximation: x
(p)
d,r,a = x

(k,p)
d,r (θa)δθ].

� Vectorize to get: y(p) = Ax(p) + w(p).

� A = [u1,1,1 u1,1,2 · · · uNd ,Nr ,Na ] ∈ CM×N ,
ud,r,a = vec(b(θa)aT (θa)S̃dJr ),

x(p) = [x
(p)
1,1,1, x

(p)
1,1,2, . . . , x

(p)
Nd ,Nr ,Na

]T ∈ CN×1.

� x(p) is block-sparse.

� P radar sweeps: Y = AX + W.
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Variational Methods - Introduction

� Bayesian models have become increasingly important to address
long-standing theoretical questions.

� Problem of probabilistic inference: computing a conditional probability
distribution over the values of some of the nodes (the �hidden nodes�),
given the values of other nodes (�evidence� nodes).
P(H|E) = P(H,E)/P(E).

� Exact algorithms provide a satisfactory solution to inference problems,
but there are cases when time and space complexity of the exact
calculation is unacceptable. - Variational approximations.

� Markov chain Monte Carlo (MCMC): requires massive computing
resources, converge slowly and might approximate the wrong posterior.
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Variational Methods - Introduction

� Variational method- deterministic approximation procedures that
generally provide bounds on probabilities of interest.

� Intuition- complex graphs can be probabilistically simple.

� If y are the observations, x are the hidden variables, θ are the unknown
parameters ,EM involves:

E-step: Compute p(x|y;θold).
M-step: Evaluate θnew = argmaxθEx|y;θold [ln p(y, x;θ)]
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Variational Methods- Introduction

� EM requires that p(x|y;θ) be explicitly known, or be able compute the
conditional expectation.

� Variational EM- Bypasses knowledge of p(x|y;θ) by assuming an
appropriate q(x) and lower-bounding the log-likelihood (F (q,θ)).

Variational E-step: Evaluate qnew(z) to maximize F (q,θold).
Variational M-step: Find θnew = argmaxθF (qnew,θ).

� Variational Garrote: Principaled approach to feature subset selection
based on variational approximation of posterior through an alternate
means of specifying prior to encourage sparsity.
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Variational EM

� Hierarchical prior model.

� Estimation of X is viewed as the estimation of
{x(p)}Pp=1

� x(p) is, in turn, viewed as a concatenation of
several smaller blocks x

(p)
b,r ∈ Rhr corresponding to

bth block of range bin r ; hr : size of the block in
range bin r .

� [Z. Zhang & B.D. Rao, TSP Apr. '13]

x
(p)
b,r satis�es p(x

(p)
b,r |αb,r ,Bb,r ) ∼ N (0, α−1b,rBb,r );

αb,r : hyperparameter controlling sparsity
Bb,r : positive de�nite matrix captures the

correlations between the elements of x
(p)
b,r .
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Variational EM

� p(α) =

Nr∏
r=1

Br∏
b=1

Gamma(αb,r |c, d)

� Marginal prob. : ln p(Y) = L(q) + KL(q ‖ p)

L(q) =
∫
q(Θ)ln p(Y,Θ)

q(Θ)
dΘ

KL(q ‖ p) = −
∫
q(Θ)ln p(Θ|Y)

q(Θ)
dΘ

Hidden variables Θ = {X,α}

� q(Θ) =
∏
i

qi (Θi )

� L(q) maximized when p(Θ|Y) = q(Θ).
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Variational EM

� Posterior distribution of each hidden variable computed by maximizing
L(q) while keeping other variables �xed using their most recent
distributions.

� ln qX (X) = 〈ln p(Y,X,α)〉qα(α) + constant

ln qα(α) = 〈ln p(Y,X,α)〉qX (X) + constant

� Variational EM:

Variational E-step: Given X from qX (X), compute qα(α).
Variational M-step: Given qα(α), compute X that maximizes L(q).

� Then

ln qX (X) ∝〈ln p(Y|X,α) + ln p(X|α)〉qα(α),

∝− λ

2

P∑
p=1

[
(y(p) − Ax

(p))T (y(p) − Ax
(p))− 1

2

(
x

(p)
)T
〈Σ−10 〉x

(p)

]
,

ln qα(α) ∝
Nr∑
r=1

Br∑
b=1

[(
c +

P

2

)
lnαb,r −

(
d +

P∑
p=1

〈x(p)
b,rB

−1
b,r x

(p)
b,r 〉

)
αb,r

]
.
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Variational EM - Algorithm

Algorithm 1 Block VB
1: Input:

Data {y(p),A}, p = 1, 2, . . . ,P, and block sizes {h1, h2, . . . , hNr }.
2: Initialize:

Set αb,r to random values, c = d = 10−6.

3: Repeat until ‖X̂(t+1) − X̂(t)‖F < ε:

(a) Form 〈Σ0〉 = diag{〈Σ1〉, 〈Σ2〉, . . . , 〈ΣNr 〉}.
(b) Compute Σt+1 = (AHA + Σ−10 )−1.
(c) Compute X̂ = Σt+1AHY.
(d) Compute αb,r = 2c+P

d+
∑P

p=1〈x
(p)
b,r

B
−1
b,r

x
(p)
b,r
〉
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Variational Garrote

� Alternate Bayesian approach- uses a variational approximation for feature
subset selection.

� Computationally e�cient, provides more accurate predictions than
methods like Lasso, ridge regression and the paired mean �eld.

� A binary variable for each unknown- provides an adaptive description of
the support.
Due to the decoupling of the estimation of the support and the unknown
vector, the VG provides excellent estimates.

� VG extended to a block-sparse recovery problem by associating a binary
selector variable with a block of the unknown vector.
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Variational Garrote

� Re-write: y(p) =
∑Nr

r=1

∑Br
b=1 sb,rAb,rx

(p)
b,r + w(p)

sb,r ∈ {0, 1}.

� Prior distribution on s

p(s|γ) =

Nr∏
r=1

Br∏
b=1

p(sb,r |γ), p(sb,r |γ) =
exp(γsb,r )

1 + exp(γ)
,

γ < 0: sparse solutions.

� Likelihood of measurements:

p(Y|s,X;λ) =

(
λ

2π

) PM
2

exp

{
−λM
2

∑
p

(
(σ(p)

y )2

−
Nr∑
r=1

Br∑
b=1

sb,r
(

(v
(p)
b,r )

H
x

(p)
b,r + (x

(p)
b,r )

H
v

(p)
b,r

)
+

Nr∑
r,t=1

Br ,Bt∑
b,c=1

sb,r sc,t(x
(p)
b,r )

H
Dbc,rtx

(p)
c,t


(σ

(p)
y )2 = 1

M
(y(p))Hy(p), v

(p)
b,r = 1

M
AH

b,ry
(p) and Dbc,rt = 1

M
AH

b,rAc,t .
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Variational Garrote

� Posterior of X: p(X|Y, γ;λ) ∝
∑

s p(Y|s,X;λ)p(s|γ).

� Approximation:
log
∑

s p(Y|s,X;λ)p(s|γ) ≥ −
∑

s q(s) log q(s)
p(s|γ)p(Y|s,X;λ)

= −F (q,X, λ).

q(s) =

Nr∏
r=1

B∏
b=1

q(sb,r ) with q(sb,r ) = mb,r sb,r + (1−mb,r )(1− sb,r ).

� Solve for F :

F =
λM

2

∑
p

 Nr∑
r,t=1

Br ,Bt∑
b,c=1

mb,rmc,t(x
(p)
b,r )

H
Dbc,rtx

(p)
c,t

+

Nr∑
r=1

Br∑
b=1

mb,r (1−mb,r )(x
(p)
b,r )

H
Dbb,rrx

(p)
b,r

−
Nr∑
r=1

Br∑
b=1

mb,r

(
(v

(p)
b,r )

H
x

(p)
b,r + (x

(p)
b,r )

H
v

(p)
b,r

)
+ (σ(p)

y )2
)

+

Nr∑
r=1

Br∑
b=1

(mb,r logmb,r + (1−mb,r )log(1−mb,r ))−
Nr∑
r=1

Br∑
b=1

γmb,r .
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Variational Garrote

� Updates for m and x(p):

x
(p) =(D

′
)−1v(p) ∀p,

mb,r =σ

(
γ +

λM

2

∑
p

(x
(p)
b,r )

H
Dbb,rrx

(p)
b,r

)
,

D
′
: matrix with (t − 1)Nr + (c − 1)Bt + 1 : (t − 1)Nr + cBt rows and

(r − 1)Nr + (b − 1)Br + 1 : (r − 1)Nr + bBr columns are
mb,rDbc,rt + (1−mb,r )Dcc,ttδbcδrt .

� To learn γ, we see that the probability of sb,r = 1 is

p(sb,r = 1|γ) = exp(γ)
1+exp(γ)

, q(sb,r = 1) = mb,r .

γ = 1

(
∑Nr

r=1 Br )

∑Nr
r=1

∑Br
b=1 ln

(
mb,r

1−mb,r

)
.
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Block VG

Algorithm 2 Block VG
1: Input:

Data {y(p),A}, p = 1, 2, . . . ,P, and block sizes {h1, h2, . . . , hNr }.
2: Initialize:

Compute v
(p)
b,r and Dbc,rt for r , t = 1, 2, . . . ,Nr , b = 1, 2, . . . ,Br for

each r , where Br = NaNd/hr and c = 1, 2, . . . ,Bt for each t, where Bt =

NaNd/ht ; set mb,r to random values. Set the initial value of D
′
from mb,r

3: Repeat until ‖m(t+1) −m(t)‖2 < ε:

(a) Update x(p) and mb,r .
(b) Update γ.

(c) Compute the matrix D
′
using the latest values of mb,r .

(d) Update m for the current iteration: m(t+1) = [m1,1,m2,1, . . . ,mBNr ,Nr ].
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Results

Mt = 5, Mr = 5, Nr = 12, Na = 61(−30° : 30°), Nd = 11, P = 50.

(i) Support estimate.
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(ii) RMSE of central angle estimate
versus SNR.
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Results

−5 0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

SNR (dB)

lo
g(

R
M

S
E

)

 

 

Gen. Capon
MBSBL
M−PCSBL
Block VG
Block VB

(i) RMSE of angular spread versus
SNR.
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(ii) RMSE of range versus SNR.
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Conclusion

� Extended source localization problem in radar/sonar - joint estimation of
angle, spread, Doppler and range.

� Block-sparse MMV problem with common support across radar sweeps.

� Two methods - variational EM and variational Garrote.

� Future work - plot CRB-type bounds for the two variational methods
- analysis of convergence of these algorithms.
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