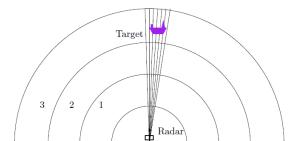
Introduction	System Model	Variationa Methods	Results	Conclusion

Extended Source Localization Using Variational Methods

Shilpa Rao Chandra R. Murthy 9 April 2016

Introduction	System Model 000	Variational Methods	Results	Conclusion
Introducti	on			

- High resolution array processing radar, radio astronomy, radio communications.
- Point target assumption is an approximation.
- Target possesses a spatial extent over a continuum of direction of arrivals (DoAs).



Introduction	System Model ●○○	Variational Methods	Results	Conclusion
System N	lodel			

- M_t Tx antennas, spacing Δ_t ; M_r Rx antennas, spacing Δ_r .
- N_d Doppler bins, N_r range bins, N_a angular bins.
- $\mathbf{s}_i \in \mathbb{C}^{L imes 1}$: waveform transmitted by the *i*th Tx antenna.
- For the *d*th Doppler bin $\mathbf{s}_i(\omega_d) = \mathbf{s}_i \odot [1, e^{j\omega_d}, \dots, e^{j(L-1)\omega_d}]^T$, $\mathbf{S}_d = [\mathbf{s}_1(\omega_d) \ \mathbf{s}_2(\omega_d) \ \cdots \ \mathbf{s}_{M_t}(\omega_d)]^T$.

Introduction	System Model ○●○	Variational Methods	Results	Conclusion
System N	/lodel			

- $x_{d,r}^{(k,p)}(\theta)$: complex angular weighting function of the *k*th source in direction θ for the radar sweep index *p*, *d*th Doppler bin, *r*th range bin.
- $\mathbf{a}(\theta)$: Tx steering vector, $\mathbf{b}(\theta)$: Rx steering vector.
- Received signal $\mathbf{Y}^{(p)} \in \mathbb{C}^{M_r \times (L+N_r-1)}$: $\mathbf{Y}^{(p)} = \sum_{d=1}^{N_d} \sum_{r=1}^{N_r} \sum_{k=1}^{K} \int_{\theta \in \Theta_k} \{ x_{d,r}^{(k,p)}(\theta) \mathbf{b}(\theta) \mathbf{a}^T(\theta) d\theta \} \tilde{\mathbf{S}}_d \mathbf{J}_r + \mathbf{W}^{(p)},$

•
$$\tilde{\mathbf{S}}_d = \begin{bmatrix} \mathbf{S}_d & \mathbf{0}_{M_t \times N_r - 1} \end{bmatrix} \mathbf{J}_r = \begin{pmatrix} \overbrace{\mathbf{0} \dots \mathbf{0}}^r & \mathbf{0} \\ \hline \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Introduction	System Model ○0●	Variational Methods 00000000000	Results	Conclusion
System N	lodel			

•
$$\mathbf{Y}^{(p)} = \sum_{d=1}^{N_d} \sum_{r=1}^{N_r} \sum_{a=1}^{N_a} x_{d,r,a}^{(p)} \mathbf{b}(\theta_a) \mathbf{a}^T(\theta_a) \mathbf{\tilde{S}}_d \mathbf{J}_r + \mathbf{W}^{(p)}.$$
[Approximation: $x_{d,r,a}^{(p)} = x_{d,r}^{(k,p)}(\theta_a) \delta \theta$].

• Vectorize to get: $\mathbf{y}^{(p)} = \mathbf{A}\mathbf{x}^{(p)} + \mathbf{w}^{(p)}$.

•
$$\begin{split} \mathbf{A} &= [\mathbf{u}_{1,1,1} \ \mathbf{u}_{1,1,2} \cdots \mathbf{u}_{N_d,N_r,N_a}] \in \mathbb{C}^{M \times N}, \\ \mathbf{u}_{d,r,a} &= \operatorname{vec}(\mathbf{b}(\theta_a) \mathbf{a}^T(\theta_a) \mathbf{\tilde{S}}_d \mathbf{J}_r), \\ \mathbf{x}^{(p)} &= [x_{1,1,1}^{(p)}, x_{1,1,2}^{(p)}, \dots, x_{N_d,N_r,N_a}^{(p)}]^T \in \mathbb{C}^{N \times 1}. \end{split}$$

- $\mathbf{x}^{(p)}$ is block-sparse.
- *P* radar sweeps: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$.

Introduction	System Model 000	Variational Methods ●0000000000	Results	Conclusion
Variationa	Methods -	Introduction		

- Bayesian models have become increasingly important to address long-standing theoretical questions.
- Problem of probabilistic inference: computing a conditional probability distribution over the values of some of the nodes (the "hidden nodes"), given the values of other nodes ("evidence" nodes). P(H|E) = P(H, E)/P(E).
- Exact algorithms provide a satisfactory solution to inference problems, but there are cases when time and space complexity of the exact calculation is unacceptable. Variational approximations.
- Markov chain Monte Carlo (MCMC): requires massive computing resources, converge slowly and might approximate the wrong posterior.

Introduction	System Model 000	Variational Methods 0●0000000000	Results	Conclusion
Variationa	Methods -	Introduction		

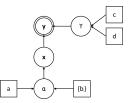
- Variational method- deterministic approximation procedures that generally provide bounds on probabilities of interest.
- Intuition- complex graphs can be probabilistically simple.
- If y are the observations, x are the hidden variables, θ are the unknown parameters ,EM involves:

E-step: Compute $p(\mathbf{x}|\mathbf{y}; \boldsymbol{\theta}_{old})$. M-step: Evaluate $\boldsymbol{\theta}_{new} = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x}|\mathbf{y};\boldsymbol{\theta}_{old}}[\ln p(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta})]$

- EM requires that p(x|y; θ) be explicitly known, or be able compute the conditional expectation.
- Variational EM- Bypasses knowledge of p(x|y; θ) by assuming an appropriate q(x) and lower-bounding the log-likelihood (F(q, θ)).
 Variational E-step: Evaluate q_{new}(z) to maximize F(q, θ_{old}).
 Variational M-step: Find θ_{new} = arg max_θF(q_{new}, θ).
- Variational Garrote: Principaled approach to feature subset selection based on variational approximation of posterior through an alternate means of specifying prior to encourage sparsity.

Introduction	System Model 000	Variational Methods ०००●०००००००	Results	Conclusion
Variational	ЕM			

- Hierarchical prior model.
- Estimation of X is viewed as the estimation of $\{x^{(p)}\}_{p=1}^{P}$
- $\mathbf{x}^{(p)}$ is, in turn, viewed as a concatenation of several smaller blocks $\mathbf{x}_{b,r}^{(p)} \in \mathbb{R}^{h_r}$ corresponding to bth block of range bin r; h_r : size of the block in range bin r.
- [Z. Zhang & B.D. Rao, TSP Apr. '13] $\mathbf{x}_{b,r}^{(p)}$ satisfies $p(\mathbf{x}_{b,r}^{(p)}|\alpha_{b,r}, \mathbf{B}_{b,r}) \sim \mathcal{N}(0, \alpha_{b,r}^{-1}\mathbf{B}_{b,r});$ $\alpha_{b,r}$: hyperparameter controlling sparsity $\mathbf{B}_{b,r}$: positive definite matrix captures the correlations between the elements of $\mathbf{x}_{b,r}^{(p)}$.



Introduction	System Model 000	Variational Methods ○○○●●○○○○○○	Results	Conclusion
Variational	EM			

•
$$p(\alpha) = \prod_{r=1}^{N_r} \prod_{b=1}^{B_r} \operatorname{Gamma}(\alpha_{b,r}|c,d)$$

• Marginal prob. :
$$\ln p(\mathbf{Y}) = L(q) + \mathrm{KL}(q \parallel p)$$

 $L(q) = \int q(\Theta) \ln \frac{p(\mathbf{Y}, \Theta)}{q(\Theta)} d\Theta$
 $\mathrm{KL}(q \parallel p) = -\int q(\Theta) \ln \frac{p(\Theta \mid \mathbf{Y})}{q(\Theta)} d\Theta$
Hidden variables $\Theta = \{\mathbf{X}, \alpha\}$

•
$$q(\boldsymbol{\Theta}) = \prod_i q_i(\boldsymbol{\Theta}_i)$$

•
$$L(q)$$
 maximized when $p(\Theta|\mathbf{Y}) = q(\Theta)$.

Introduction	System Model 000	Variational Methods	Results	Conclusion
Variational	EM			

- Posterior distribution of each hidden variable computed by maximizing L(q) while keeping other variables fixed using their most recent distributions.
- $\ln q_X(\mathbf{X}) = \langle \ln p(\mathbf{Y}, \mathbf{X}, \alpha) \rangle_{q_\alpha(\alpha)} + \text{constant}$ $\ln q_\alpha(\alpha) = \langle \ln p(\mathbf{Y}, \mathbf{X}, \alpha) \rangle_{q_X(\mathbf{X})} + \text{constant}$
- Variational EM:

Variational E-step: Given **X** from $q_X(\mathbf{X})$, compute $q_{\alpha}(\alpha)$. Variational M-step: Given $q_{\alpha}(\alpha)$, compute **X** that maximizes L(q).

• Then

 $\ln q_X(\mathsf{X}) \propto \langle \ln p(\mathsf{Y}|\mathsf{X}, \boldsymbol{\alpha}) + \ln p(\mathsf{X}|\boldsymbol{\alpha}) \rangle_{q_{\boldsymbol{\alpha}}(\boldsymbol{\alpha})},$

$$\propto -\frac{\lambda}{2}\sum_{p=1}^{P}\left[(\mathbf{y}^{(p)}-\mathbf{A}\mathbf{x}^{(p)})^{T}(\mathbf{y}^{(p)}-\mathbf{A}\mathbf{x}^{(p)})-\frac{1}{2}\left(\mathbf{x}^{(p)}\right)^{T}\langle\mathbf{\Sigma}_{0}^{-1}\rangle\mathbf{x}^{(p)}\right],$$

$$\ln q_{\alpha}(\boldsymbol{\alpha}) \propto \sum_{r=1}^{N_{r}} \sum_{b=1}^{B_{r}} \left[\left(\boldsymbol{c} + \frac{\boldsymbol{P}}{2} \right) \ln \alpha_{b,r} - \left(\boldsymbol{d} + \sum_{p=1}^{P} \langle \mathbf{x}_{b,r}^{(p)} \mathbf{B}_{b,r}^{-1} \mathbf{x}_{b,r}^{(p)} \rangle \right) \alpha_{b,r} \right].$$

Variational EM - Algorithm

Algorithm 1 Block VB

1: Input:

Data
$$\{\mathbf{y}^{(p)},\mathbf{A}\}, p=1,2,\ldots,P$$
, and block sizes $\{h_1,h_2,\ldots,h_{N_r}\}$.

2: Initialize:

Set $\alpha_{b,r}$ to random values, $c = d = 10^{-6}$.

3: Repeat until
$$\|\hat{\mathbf{X}}^{(t+1)} - \hat{\mathbf{X}}^{(t)}\|_{\mathcal{F}} < \epsilon$$
:

(a) Form
$$\langle \boldsymbol{\Sigma}_0 \rangle = \operatorname{diag}\{\langle \boldsymbol{\Sigma}_1 \rangle, \langle \boldsymbol{\Sigma}_2 \rangle, \dots, \langle \boldsymbol{\Sigma}_{N_r} \rangle\}.$$

(b) Compute
$$\boldsymbol{\Sigma}^{t+1} = (\mathbf{A}^{t}\mathbf{A} + \boldsymbol{\Sigma}_0^{-1})^{-1}$$
.

(c) Compute
$$\mathbf{X} = \mathbf{\Sigma}^{r+1} \mathbf{A}^{H} \mathbf{Y}$$

(d) Compute
$$\alpha_{b,r} = \frac{2c+P}{d+\sum_{\rho=1}^{P} \langle \mathbf{x}_{b,r}^{(\rho)} \mathbf{B}_{b,r}^{-1} \mathbf{x}_{b,r}^{(\rho)} \rangle}$$

Introduction	System Model 000	Variational Methods ○○○○○○●○○○○	Results	Conclusion
Variational	Garrote			

- Alternate Bayesian approach- uses a variational approximation for feature subset selection.
- Computationally efficient, provides more accurate predictions than methods like Lasso, ridge regression and the paired mean field.
- A binary variable for each unknown- provides an adaptive description of the support.
 Due to the decoupling of the estimation of the support and the unknown vector, the VG provides excellent estimates.
- VG extended to a block-sparse recovery problem by associating a binary selector variable with a block of the unknown vector.

Mantational	<u> </u>			
Introduction	System Model 000	Variational Methods ○○○○○○○○○○○	Results	Conclusion

Variational Garrote

• Re-write:
$$\mathbf{y}^{(p)} = \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} s_{b,r} \mathbf{A}_{b,r} \mathbf{x}_{b,r}^{(p)} + \mathbf{w}^{(p)}$$

 $s_{b,r} \in \{0,1\}.$

• Prior distribution on **s**

$$p(\mathbf{s}|\gamma) = \prod_{r=1}^{N_r} \prod_{b=1}^{B_r} p(s_{b,r}|\gamma), \qquad p(s_{b,r}|\gamma) = \frac{\exp(\gamma s_{b,r})}{1 + \exp(\gamma)},$$

 $\gamma < {\rm 0:}$ sparse solutions.

• Likelihood of measurements:

$$p(\mathbf{Y}|\mathbf{s},\mathbf{X};\lambda) = \left(\frac{\lambda}{2\pi}\right)^{\frac{PM}{2}} \exp\left\{\frac{-\lambda M}{2}\sum_{p}\left((\sigma_{y}^{(p)})^{2}\right)^{2}\right\}$$

$$\left. - \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} s_{b,r} \left((\mathbf{v}_{b,r}^{(p)})^H \mathbf{x}_{b,r}^{(p)} + (\mathbf{x}_{b,r}^{(p)})^H \mathbf{v}_{b,r}^{(p)} \right) + \sum_{r,t=1}^{N_r} \sum_{b,c=1}^{B_r,B_t} s_{b,r} s_{c,t} (\mathbf{x}_{b,r}^{(p)})^H \mathbf{D}_{bc,rt} \mathbf{x}_{c,t}^{(p)} \right) \right\}$$

$$(\sigma_y^{(p)})^2 = \frac{1}{M} (\mathbf{y}^{(p)})^H \mathbf{y}^{(p)}, \ \mathbf{v}_{b,r}^{(p)} = \frac{1}{M} \mathbf{A}_{b,r}^H \mathbf{y}^{(p)} \text{ and } \mathbf{D}_{bc,rt} = \frac{1}{M} \mathbf{A}_{b,r}^H \mathbf{A}_{c,t}$$

Introduction	System Model 000	Variational Methods ००००००००●००	Results	Conclusion
Variationa	Garrote			

- Posterior of X: $p(X|Y, \gamma; \lambda) \propto \sum_{s} p(Y|s, X; \lambda) p(s|\gamma)$.
- Approximation: $\log \sum_{\mathbf{s}} p(\mathbf{Y}|\mathbf{s}, \mathbf{X}; \lambda) p(\mathbf{s}|\gamma) \ge -\sum_{\mathbf{s}} q(\mathbf{s}) \log \frac{q(\mathbf{s})}{p(\mathbf{s}|\gamma) p(\mathbf{Y}|\mathbf{s}, \mathbf{X}; \lambda)} = -F(q, \mathbf{X}, \lambda).$ $q(\mathbf{s}) = \prod_{r=1}^{N_r} \prod_{b=1}^{B} q(s_{b,r}) \text{ with } q(s_{b,r}) = m_{b,r} s_{b,r} + (1 - m_{b,r})(1 - s_{b,r}).$
- Solve for F:

$$\begin{split} F &= \frac{\lambda M}{2} \sum_{p} \left(\sum_{r,t=1}^{N_r} \sum_{b,c=1}^{B_r,B_t} m_{b,r} m_{c,t} (\mathbf{x}_{b,r}^{(p)})^H \mathbf{D}_{bc,rt} \mathbf{x}_{c,t}^{(p)} \right. \\ &+ \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} m_{b,r} (1 - m_{b,r}) (\mathbf{x}_{b,r}^{(p)})^H \mathbf{D}_{bb,rr} \mathbf{x}_{b,r}^{(p)} \\ &- \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} m_{b,r} \left((\mathbf{v}_{b,r}^{(p)})^H \mathbf{x}_{b,r}^{(p)} + (\mathbf{x}_{b,r}^{(p)})^H \mathbf{v}_{b,r}^{(p)} \right) + (\sigma_y^{(p)})^2 \right) \\ &+ \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} (m_{b,r} \log m_{b,r} + (1 - m_{b,r}) \log (1 - m_{b,r})) - \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} \gamma m_{b,r}. \end{split}$$

Introduction	System Model 000	Variational Methods ○○○○○○○○●○	Results	Conclusion
Variational	Garrote			

• Updates for **m** and **x**^(p):

$$\begin{split} \mathbf{x}^{(p)} &= (\mathbf{D}^{'})^{-1} \mathbf{v}^{(p)} \; \forall p, \\ m_{b,r} &= \sigma \left(\gamma + \frac{\lambda M}{2} \sum_{p} (\mathbf{x}_{b,r}^{(p)})^{H} \mathbf{D}_{bb,rr} \mathbf{x}_{b,r}^{(p)} \right), \end{split}$$

D': matrix with $(t-1)N_r + (c-1)B_t + 1 : (t-1)N_r + cB_t$ rows and $(r-1)N_r + (b-1)B_r + 1 : (r-1)N_r + bB_r$ columns are $m_{b,r}D_{bc,rt} + (1-m_{b,r})D_{cc,tt}\delta_{bc}\delta_{rt}$.

• To learn γ , we see that the probability of $s_{b,r} = 1$ is $p(s_{b,r} = 1 | \gamma) = \frac{\exp(\gamma)}{1 + \exp(\gamma)}, \quad q(s_{b,r} = 1) = m_{b,r}.$ $\gamma = \frac{1}{(\sum_{r=1}^{N_r} B_r)} \sum_{r=1}^{N_r} \sum_{b=1}^{B_r} \ln\left(\frac{m_{b,r}}{1 - m_{b,r}}\right).$

Introduction	System Model 000	Variational Methods ○○○○○○○○○○	Results	Conclusion
Block VG				

Algorithm 2 Block VG

1: Input:

Data $\{\mathbf{y}^{(p)}, \mathbf{A}\}, p = 1, 2, \dots, P$, and block sizes $\{h_1, h_2, \dots, h_{N_r}\}$.

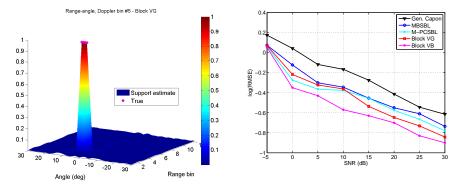
2: Initialize:

Compute $\mathbf{v}_{b,r}^{(p)}$ and $\mathbf{D}_{bc,rt}$ for $r, t = 1, 2, \ldots, N_r, b = 1, 2, \ldots, B_r$ for each r, where $B_r = N_a N_d / h_r$ and $c = 1, 2, \ldots, B_t$ for each t, where $B_t = N_a N_d / h_t$; set $m_{b,r}$ to random values. Set the initial value of \mathbf{D}' from $m_{b,r}$ 3: Repeat until $\|\mathbf{m}^{(t+1)} - \mathbf{m}^{(t)}\|_2 < \epsilon$:

- (a) Update $\mathbf{x}^{(p)}$ and $m_{b,r}$.
- (b) Update γ .
- (c) Compute the matrix \mathbf{D}' using the latest values of $m_{b,r}$.
- (d) Update **m** for the current iteration: $\mathbf{m}^{(t+1)} = [m_{1,1}, m_{2,1}, \dots, m_{B_{N_r},N_r}]$.

Introduction	System Model 000	Variational Methods	Results	Conclusion
Results				

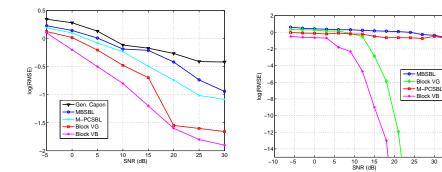
$$M_t = 5$$
, $M_r = 5$, $N_r = 12$, $N_a = 61(-30^\circ: 30^\circ)$, $N_d = 11$, $P = 50$



(ii) RMSE of central angle estimate versus SNR.

(i) Support estimate.

Introduction	System Model 000	Variational Methods	Results	Conclusion
Results				



(i) RMSE of angular spread versus SNR.

(ii) RMSE of range versus SNR.

30 35

Introduction	System Model 000	Variational Methods 00000000000	Results	Conclusion
Conclusion				

- Extended source localization problem in radar/sonar joint estimation of angle, spread, Doppler and range.
- Block-sparse MMV problem with common support across radar sweeps.
- Two methods variational EM and variational Garrote.
- Future work plot CRB-type bounds for the two variational methods analysis of convergence of these algorithms.