Target Self-Localization to an Area

Prabhasa K

Project Assistant, SPC Lab
Department of Electrical Communication Engineering Indian Institute of Science
Original Contributors: Venu et al.
Current Contributors: Chandra R Murthy, Prabhasa K

March 25, 2017

Overview

- Introduction

Overview

- Introduction
- Average Area Uncertainty

Overview

- Introduction
- Average Area Uncertainty
- Column Matching Algorithm

Overview

- Introduction
- Average Area Uncertainty
- Column Matching Algorithm
- Simulation Results

Overview

- Introduction
- Average Area Uncertainty
- Column Matching Algorithm
- Simulation Results
- Future work

Introduction

- Problem: Self-localization (within an area) of a target node using RSS measurements from beacons transmitting from known locations.

Introduction

- Problem: Self-localization (within an area) of a target node using RSS measurements from beacons transmitting from known locations.
- Motivation:
- Localization in indoor environments is challenging.
- Advances in WSN has enabled low-cost infrastructure deployment.
- Algorithms that are computationally efficient.

Introduction

- Problem: Self-localization (within an area) of a target node using RSS measurements from beacons transmitting from known locations.
- Motivation:
- Localization in indoor environments is challenging.
- Advances in WSN has enabled low-cost infrastructure deployment.
- Algorithms that are computationally efficient.
- Applications:
- Tracking position of a target on a factory floor or in a hospital (intrusion detection, fire alarm).
- Enabling Coginitve Radio spectrum through geo-location of WSDs.

Random node deployment strategies

Figure: Source:ResearchGate

Comparison of deployment strategies

Connected

	Coverage	Connectivity	coverage
Constant diffusion	++	++	++
Continuous diffusion	+	+	+
R-random diffusion	\pm	\pm	\pm
Simple diffusion	-	-	-
Exponential diffusion	--	--	--

Figure: Source:ResearchGate

Introduction

Approach: Overlaying the geographical area of interest with a virtual grid translates the problem to one of Non-adaptive Group Testing.

Introduction

Approach: Overlaying the geographical area of interest with a virtual grid translates the problem to one of Non-adaptive Group Testing.
Primary Goal: Localize within a (i) region of uncertainty, or (ii) within a required level of accuracy (with high probability) of the target's true location.

Introduction

Approach: Overlaying the geographical area of interest with a virtual grid translates the problem to one of Non-adaptive Group Testing.
Primary Goal: Localize within a (i) region of uncertainty, or (ii) within a required level of accuracy (with high probability) of the target's true location.
Tools: Group Testing, Order Statistics, Stochastic Geometry (PPP).

Introduction

Approach: Overlaying the geographical area of interest with a virtual grid translates the problem to one of Non-adaptive Group Testing.
Primary Goal: Localize within a (i) region of uncertainty, or (ii) within a required level of accuracy (with high probability) of the target's true location.
Tools: Group Testing, Order Statistics, Stochastic Geometry (PPP).

Notation:

- K - Number of beacons
- M - Number of power thresholds
- δ - Required Degree of Accuracy/Size of Grid Cells
- L - Number of grid points in each dimension $\left(L \triangleq\left\lceil\frac{1}{\delta}\right\rceil\right)$
- λ - Beacon Density (K / L^{2})

Illustration

Figure: Measurement process for Target Self-Localization

System Model

- Beacon node b_{i} transmits with a power P_{0}. RSS is observed at the target node $P_{r x, i} \triangleq \min \left(P_{0}, P_{0}\left(d_{0} / d_{i}\right)^{\eta}\right)$.

System Model

- Beacon node b_{i} transmits with a power P_{0}. RSS is observed at the target node $P_{r x, i} \triangleq \min \left(P_{0}, P_{0}\left(d_{0} / d_{i}\right)^{\eta}\right)$.
- Target node compares the RSS $P_{r x, i}$ with M predetermined intervals, $\left\{\mathcal{I}^{(j)} \triangleq\left(P_{t h}^{(j-1)}, P_{t h}^{(j)}\right]: j=1, \ldots, M, P_{t h}^{(0)}=P_{0}\right\}$.

System Model

- Beacon node b_{i} transmits with a power P_{0}. RSS is observed at the target node $P_{r x, i} \triangleq \min \left(P_{0}, P_{0}\left(d_{0} / d_{i}\right)^{\eta}\right)$.
- Target node compares the RSS $P_{r x, i}$ with M predetermined intervals, $\left\{\mathcal{I}^{(j)} \triangleq\left(P_{t h}^{(j-1)}, P_{t h}^{(j)}\right]: j=1, \ldots, M, P_{t h}^{(0)}=P_{0}\right\}$.
- The reading corresponding to b_{i} and $\mathcal{I}^{(j)}$ is set as follows:

$$
y_{i}^{(j)} \triangleq\left\{\begin{array}{lc}
1, & P_{t h}^{(j-1)}>P_{r x, i} \geq P_{t h}^{(j)} \tag{1}\\
0, & \text { else. }
\end{array}\right.
$$

System Model

- Beacon node b_{i} transmits with a power P_{0}. RSS is observed at the target node $P_{r x, i} \triangleq \min \left(P_{0}, P_{0}\left(d_{0} / d_{i}\right)^{\eta}\right)$.
- Target node compares the RSS $P_{r x, i}$ with M predetermined intervals, $\left\{\mathcal{I}^{(j)} \triangleq\left(P_{t h}^{(j-1)}, P_{t h}^{(j)}\right]: j=1, \ldots, M, P_{t h}^{(0)}=P_{0}\right\}$.
- The reading corresponding to b_{i} and $\mathcal{I}^{(j)}$ is set as follows:

$$
y_{i}^{(j)} \triangleq\left\{\begin{array}{lc}
1, & P_{t h}^{(j-1)}>P_{r x, i} \geq P_{t h}^{(j)} \tag{1}\\
0, & \text { else. }
\end{array}\right.
$$

Objective: (i) Minimize the area uncertainty, or (ii) Minimize beacon density required to meet the desired localization accuracy (with high probability).

1 - Average Area Uncertainty

- K beacon nodes deployed uniformly at random in the area of interest.

1 - Average Area Uncertainty

- K beacon nodes deployed uniformly at random in the area of interest.
- Let $\nu_{i} \triangleq \sum_{j=1}^{M} j y_{i}^{(j)}$, which can take $M+1$ possible values: $\{0,1, \ldots, M\}$. So the the set of all possible readings is $\mathcal{V} \triangleq\{0,1, \ldots, M\}^{K}$, with $|\mathcal{V}|=(M+1)^{K}$.

1 - Average Area Uncertainty

- K beacon nodes deployed uniformly at random in the area of interest.
- Let $\nu_{i} \triangleq \sum_{j=1}^{M} j y_{i}^{(j)}$, which can take $M+1$ possible values: $\{0,1, \ldots, M\}$. So the the set of all possible readings is $\mathcal{V} \triangleq\{0,1, \ldots, M\}^{K}$, with $|\mathcal{V}|=(M+1)^{K}$.
- Let P_{ν} be the probability that the target present at $\left(x_{t}, y_{t}\right)$ has a reading ν. Averaging over both target and beacon deployment, the the average area uncertainty at $\left(x_{t}, y_{t}\right)$ is:

$$
\begin{equation*}
\Omega=\sum_{\nu \in \mathcal{V}} \mathbb{E}\left[P_{\nu}^{2}\right] \tag{2}
\end{equation*}
$$

Performance Analysis ($M=1$)

Theorem

When K beacon nodes, each with a power contour of radius r, are distributed uniformly at random in \mathcal{A}, the average area uncertainty in localizing the target is given by

$$
\begin{equation*}
\Omega_{a}(q) \approx\left[q^{2}+(1-q)^{2}\right]^{K} \tag{3}
\end{equation*}
$$

where $q \triangleq \mathbb{E}[X]$ and X is the r.v. representing coverage area of a single beacon. Further, $q^{*}=1 / 2$ minimizes (3), and the corresponding beacon radius is $r^{*}=0.512$ and the average area uncertainty is $\Omega_{a}\left(q^{*}\right)=(1 / 2)^{K}$.

Performance Analysis

Proof.

Suppose the first / entries of the reading ν are ' 1 ' and the remaining $(K-I)$ entries are ' 0 '. Since beacons are i.i.d. uniformly over \mathcal{A}, the probability of observing the reading ν is $P_{\nu}=X^{\prime}(1-X)^{K-1}$.

Performance Analysis

Proof.

Suppose the first / entries of the reading ν are ' 1 ' and the remaining ($K-I$) entries are ' 0 '. Since beacons are i.i.d. uniformly over \mathcal{A}, the probability of observing the reading ν is $P_{\nu}=X^{\prime}(1-X)^{K-1}$.

There are $\binom{K}{1}$ combinations of readings with I ones and $K-I$ zeros. Therefore, the expectation of $\sum_{\nu \in \mathcal{V}} P_{\nu}^{2}$ over the target location, i.e., the average area uncertainty in localization is given by

Performance Analysis

Proof.

Suppose the first / entries of the reading ν are ' 1 ' and the remaining $(K-I)$ entries are ' 0 '. Since beacons are i.i.d. uniformly over \mathcal{A}, the probability of observing the reading ν is $P_{\nu}=X^{\prime}(1-X)^{K-1}$.

There are $\binom{K}{1}$ combinations of readings with I ones and $K-I$ zeros. Therefore, the expectation of $\sum_{\nu \in \mathcal{V}} P_{\nu}^{2}$ over the target location, i.e., the average area uncertainty in localization is given by

$$
\begin{align*}
\Omega & =\mathbb{E}\left[\sum_{I=0}^{K}\binom{K}{I}\left(X^{2}\right)^{\prime}\left((1-X)^{2}\right)^{K-I}\right], \\
& =\mathbb{E}\left[\left(X^{2}+(1-X)^{2}\right)^{K}\right] . \tag{4}
\end{align*}
$$

Performance Analysis

Proof.

Further, by Jensen's inequality, the lower bound on (4) is given by

$$
\begin{aligned}
\Omega & \geq\left(\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[(1-X)^{2}\right]\right)^{K}, \\
& =\left(q^{2}+(1-q)^{2}+2 \operatorname{Var}[X]\right)^{K} \triangleq \Omega_{l b},
\end{aligned}
$$

where $q \triangleq \mathbb{E}[X]$. In comparison to $q^{2}+(1-q)^{2}$, the variance term is nearly flat across different values of r :

Performance Analysis

Proof.

Further, by Jensen's inequality, the lower bound on (4) is given by

$$
\begin{aligned}
\Omega & \geq\left(\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[(1-X)^{2}\right]\right)^{K}, \\
& =\left(q^{2}+(1-q)^{2}+2 \operatorname{Var}[X]\right)^{K} \triangleq \Omega_{l b},
\end{aligned}
$$

where $q \triangleq \mathbb{E}[X]$. In comparison to $q^{2}+(1-q)^{2}$, the variance term is nearly flat across different values of r :

$$
\begin{equation*}
\Omega_{a}(q) \approx\left(q^{2}+(1-q)^{2}\right)^{K} \tag{5}
\end{equation*}
$$

Performance Analysis

Proof.

Further, by Jensen's inequality, the lower bound on (4) is given by

$$
\begin{aligned}
\Omega & \geq\left(\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[(1-X)^{2}\right]\right)^{K}, \\
& =\left(q^{2}+(1-q)^{2}+2 \operatorname{Var}[X]\right)^{K} \triangleq \Omega_{l b},
\end{aligned}
$$

where $q \triangleq \mathbb{E}[X]$. In comparison to $q^{2}+(1-q)^{2}$, the variance term is nearly flat across different values of r :

$$
\begin{equation*}
\Omega_{a}(q) \approx\left(q^{2}+(1-q)^{2}\right)^{K} . \tag{5}
\end{equation*}
$$

$q^{*}=1 / 2$ minimizes (5) over $q \in[0,1]$, and the corresponding beacon radius is $r^{*}=0.512$, computed using

$$
\begin{equation*}
q=(1 / 2) r^{4}-(8 / 3) r^{3}+\pi r^{2} \tag{6}
\end{equation*}
$$

Performance Analysis

Theorem

When K beacon nodes, each with M power contours of radii $r_{1}<r_{2}<\ldots<r_{m}<\ldots<r_{M}$, are distributed uniformly at random in \mathcal{A}, the average area uncertainty in localizing the target is given by

$$
\begin{equation*}
\Omega_{a} \approx\left[q_{1}^{2}+\sum_{m=2}^{M}\left(q_{m}-q_{m-1}\right)^{2}+\left(1-q_{M}\right)^{2}\right]^{K} \tag{7}
\end{equation*}
$$

where $q_{m} \triangleq \mathbb{E}\left[X_{m}\right], m=1,2, \ldots, M$, and X_{m} is an r.v. representing the area coverage of a single beacon with radius r_{m}. The quantities $q_{m}^{*}=\frac{m}{M+1}, m=1,2, \ldots, M$, minimize (5), and the corresponding average area uncertainty is $\Omega_{a}^{*}=\left(\frac{1}{M+1}\right)^{K}$. Note that, the beacon radii r_{m}^{*}, $m=1,2, \ldots, M$, is obtained by inverse-mapping the q_{m}^{*} using (6).

Result

Result

Average Area Uncertainty in a $10 \mathrm{mx10m}$ grid

Figure: Outer loop Target, Inner loop Beacons

Result

Figure: Outer loop Beacons, Inner loop Target

Result

Average Area Uncertainty in a $10 \mathrm{~m} \times 10 \mathrm{~m}$ grid

Figure: Joint deployment

2 - Column Matching Algorithm

- For the test corresponding to the $j^{\text {th }}$ threshold interval of the $i^{t h}$ beacon's signal, the grid points in the annulus $\mathcal{A}_{i}^{(j)}$ are tested. Let it be represented by $\mathbf{a}_{i}^{(j)} \in\{0,1\}^{1 \times C}$, where $C \triangleq L_{1} L_{2}$

2 - Column Matching Algorithm

- For the test corresponding to the $j^{\text {th }}$ threshold interval of the $i^{t h}$ beacon's signal, the grid points in the annulus $\mathcal{A}_{i}^{(j)}$ are tested. Let it be represented by $\mathbf{a}_{i}^{(j)} \in\{0,1\}^{1 \times C}$, where $C \triangleq L_{1} L_{2}$
- The entries corresponding to the points being tested are set to 1 and the remaining entries are set to 0 .

Illustration

2 - Column Matching Algorithm

- For the test corresponding to the $j^{\text {th }}$ threshold interval of the $i^{t h}$ beacon's signal, the grid points in the annulus $\mathcal{A}_{i}^{(j)}$ are tested. Let it be represented by $\mathbf{a}_{i}^{(j)} \in\{0,1\}^{1 \times C}$, where $C \triangleq L_{1} L_{2}$

2 - Column Matching Algorithm

- For the test corresponding to the $j^{\text {th }}$ threshold interval of the $i^{t h}$ beacon's signal, the grid points in the annulus $\mathcal{A}_{i}^{(j)}$ are tested. Let it be represented by $\mathbf{a}_{i}^{(j)} \in\{0,1\}^{1 \times C}$, where $C \triangleq L_{1} L_{2}$
- The entries corresponding to the points being tested are set to 1 and the remaining entries are set to 0 .

2 - Column Matching Algorithm

- For the test corresponding to the $j^{\text {th }}$ threshold interval of the $i^{t h}$ beacon's signal, the grid points in the annulus $\mathcal{A}_{i}^{(j)}$ are tested. Let it be represented by $\mathbf{a}_{i}^{(j)} \in\{0,1\}^{1 \times C}$, where $C \triangleq L_{1} L_{2}$
- The entries corresponding to the points being tested are set to 1 and the remaining entries are set to 0 .
- The measurement process:

$$
\begin{equation*}
\mathbf{y}=\mathbf{A} \mathbf{x} \tag{8}
\end{equation*}
$$

$x \in\{0,1\}^{C \times 1}$ - true position of the target.

2 - Column Matching Algorithm

- For the test corresponding to the $j^{\text {th }}$ threshold interval of the $i^{t h}$ beacon's signal, the grid points in the annulus $\mathcal{A}_{i}^{(j)}$ are tested. Let it be represented by $\mathbf{a}_{i}^{(j)} \in\{0,1\}^{1 \times C}$, where $C \triangleq L_{1} L_{2}$
- The entries corresponding to the points being tested are set to 1 and the remaining entries are set to 0 .
- The measurement process:

$$
\begin{equation*}
\mathbf{y}=\mathbf{A} \mathbf{x} \tag{8}
\end{equation*}
$$

$\mathbf{x} \in\{0,1\}^{C \times 1}$ - true position of the target.

- The Column Matching Algorithm attempts to match the columns of A with test result vector \mathbf{y} :

$$
\begin{equation*}
\mathcal{K}=\operatorname{supp}\left\{\max \left\{\mathbf{y}^{t} \mathbf{A}-\mathbb{1}_{\text {algo }}\left(\mathbf{y}^{c}\right)^{t} \mathbf{A}\right\}\right\}, \tag{9}
\end{equation*}
$$

Column Matching Algorithm (xnor)

```
tar =
    7.4871 8.2558
Target is able to detect:
    5
estimate_xnor_centroid =
    7.5000
    8.0000
Elapsed time is 0.479449 seconds. >>
stimate_xnor_centroid \(=\)
7.5000
8.0000
```


Figure: Target Localization in a 10×10 grid. Target shown by a yellow star.

Performance Analysis

Lemma

When the beacon nodes are distributed as PPP with intensity λ, the number of beacon nodes with power contours of radius r intersecting any vertical/horizontal line segment \mathcal{S} is Poisson distributed with mean $\mu_{1}=\lambda(2 r)$. The total number of such intersections N on the line segment \mathcal{S} is approximately Poisson distributed with mean $\lambda\left(4 r-\pi r^{2}\right)$.

Figure: Illustration of the beacon power contours intersecting a line

Performance Analysis

Lemma

When the beacon nodes are distributed as PPP with intensity λ, the number of beacon nodes with power contours of radius r intersecting any vertical/horizontal line segment \mathcal{S} is Poisson distributed with mean $\mu_{1}=\lambda(2 r)$. The total number of such intersections N on the line segment \mathcal{S} is approximately Poisson distributed with mean $\lambda\left(4 r-\pi r^{2}\right)$.

Performance Analysis

Lemma

When the beacon nodes are distributed as PPP with intensity λ, the number of beacon nodes with power contours of radius r intersecting any vertical/horizontal line segment \mathcal{S} is Poisson distributed with mean $\mu_{1}=\lambda(2 r)$. The total number of such intersections N on the line segment \mathcal{S} is approximately Poisson distributed with mean $\lambda\left(4 r-\pi r^{2}\right)$.

Proof.

Consider a region \mathcal{R} formed by a rectangular strip of size $1 \times 2 r$. The average number of beacon nodes that intersect \mathcal{S} is

$$
\begin{equation*}
\mu_{1}=\lambda(\text { Area of } \mathcal{R})=\lambda(2 r) \tag{10}
\end{equation*}
$$

The mean of the number of intersections on \mathcal{S} is given by

$$
\begin{equation*}
\mu=2 \lambda\left(2 r-\pi r^{2}\right)+\lambda\left(\pi r^{2}\right)=\lambda\left(4 r-\pi r^{2}\right) \tag{11}
\end{equation*}
$$

Performance Analysis

Lemma

The cumulative distribution function (cdf) of the largest among the spacings between successive ordered uniform r.v.s in the range $[0,1]$ is given by

$$
\begin{equation*}
\operatorname{Pr}\left(V_{(n+1)} \leq \delta\right)=1-\sum_{k=1}^{\min (n+1, L-1)}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n} \tag{12}
\end{equation*}
$$

where $n \geq 0, \delta \in(0,1)$ and $L \triangleq\left\lceil\frac{1}{\delta}\right\rceil$.

Performance Analysis

Proof.

The probability of the occurrence of at least one of the events $V_{i}>\delta$ can be expressed as (Boole's formula)

$$
\begin{aligned}
\operatorname{Pr}\left\{\bigcup_{i=1}^{n+1}\left(V_{i}>\delta\right)\right\} & =\sum_{i} \operatorname{Pr}\left(V_{i}>\delta\right)-\sum_{i<j} \operatorname{Pr}\left(V_{i}>\delta, V_{j}>\delta\right) \\
& +\ldots+(-1)^{n} \operatorname{Pr}\left(V_{1}>\delta, V_{2}>\delta, \ldots, V_{n+1}>\delta\right)
\end{aligned}
$$

(13)

Performance Analysis

Proof.

The probability of the occurrence of at least one of the events $V_{i}>\delta$ can be expressed as (Boole's formula)

$$
\begin{align*}
\operatorname{Pr}\left\{\bigcup_{i=1}^{n+1}\left(V_{i}>\delta\right)\right\} & =\sum_{i} \operatorname{Pr}\left(V_{i}>\delta\right)-\sum_{i<j} \operatorname{Pr}\left(V_{i}>\delta, V_{j}>\delta\right) \\
& +\ldots+(-1)^{n} \operatorname{Pr}\left(V_{1}>\delta, V_{2}>\delta, \ldots, V_{n+1}>\delta\right) \tag{13}
\end{align*}
$$

The joint distribution of k events $V_{1}>\delta, V_{k}>\delta$ is symmetrical in V_{i}. The union event $\cup_{i=1}^{n+1}\left(V_{i}>\delta\right)$ is the same as $\left(V_{(n+1)}>\delta\right)$.

$$
\begin{equation*}
\operatorname{Pr}\left(V_{(n+1)}>\delta\right)=\sum_{k=1}^{\min (n+1, L-1)}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n}, \tag{14}
\end{equation*}
$$

Performance Analysis

Theorem

The average probability of the largest spacing between successive intersections being less than or equal to the size of the grid cell, when the number of intersections N is Poisson distributed with mean μ, is given by

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right]=1-\sum_{k=1}^{L-1} \frac{e^{-k \delta \mu}[\mu(1-k \delta)+k][-\mu(1-k \delta)]^{k-1}}{k!}, \tag{15}
\end{equation*}
$$

where $\delta \triangleq \frac{1}{L}$ is the size of the grid cell.

Performance Analysis

Proof.

$\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]=\sum_{n=0}^{\infty} \operatorname{Pr}\left(V_{(n+1)}>\delta\right) \operatorname{Pr}(N=n)$

Performance Analysis

Proof.

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right] & =\sum_{n=0}^{\infty} \operatorname{Pr}\left(V_{(n+1)}>\delta\right) \operatorname{Pr}(N=n) \\
& =\sum_{n=0}^{\infty} \sum_{k=1}^{\min (n+1, L-1)}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n} \frac{e^{-\mu} \mu^{n}}{n!}
\end{aligned}
$$

Performance Analysis

Proof.

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right] & =\sum_{n=0}^{\infty} \operatorname{Pr}\left(V_{(n+1)}>\delta\right) \operatorname{Pr}(N=n) \\
& =\sum_{n=0}^{\infty} \sum_{k=1}^{\min (n+1, L-1)}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n} \frac{e^{-\mu} \mu^{n}}{n!} \\
& =\sum_{k=1}^{L-1} \sum_{n=k-1}^{\infty}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n} \frac{e^{-\mu} \mu^{n}}{n!}
\end{aligned}
$$

Performance Analysis

Proof.

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right] & =\sum_{n=0}^{\infty} \operatorname{Pr}\left(V_{(n+1)}>\delta\right) \operatorname{Pr}(N=n) \\
& =\sum_{n=0}^{\infty} \sum_{k=1}^{\min (n+1, L-1)}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n} \frac{e^{-\mu} \mu^{n}}{n!} \\
& =\sum_{k=1}^{L-1} \sum_{n=k-1}^{\infty}(-1)^{k-1}\binom{n+1}{k}(1-k \delta)^{n} \frac{e^{-\mu} \mu^{n}}{n!} \\
& =e^{-\mu} \sum_{k=1}^{L-1} \frac{(-1)^{k-1}}{k!} \sum_{n=k-1}^{\infty} \frac{(n+1)}{(n+1-k)!}[\mu(1-k \delta)]^{n}
\end{aligned}
$$

Performance Analysis

Proof.

$$
\begin{equation*}
=e^{-\mu} \sum_{k=1}^{L-1} \frac{(-1)^{k-1}}{k!}\left[\sum_{n=k-1}^{\infty} \frac{(n+1-k)}{(n+1-k)!}[\mu(1-k \delta)]^{n}+\sum_{n=k-1}^{\infty} \frac{k}{(n+1-k)!}[\mu(1-k \delta)]^{n}\right] \tag{16}
\end{equation*}
$$

Performance Analysis

Proof.

$$
\begin{equation*}
=e^{-\mu} \sum_{k=1}^{L-1} \frac{(-1)^{k-1}}{k!}\left[\sum_{n=k-1}^{\infty} \frac{(n+1-k)}{(n+1-k)!}[\mu(1-k \delta)]^{n}+\sum_{n=k-1}^{\infty} \frac{k}{(n+1-k)!}[\mu(1-k \delta)]^{n}\right] \tag{16}
\end{equation*}
$$

The inner summation terms of (16) are Taylor series expansions of the scaled exponential function in $\mu(1-k \delta)$, so

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]=e^{-\mu} \sum_{k=1}^{L-1} \frac{(-1)^{k-1}}{k!}\left[[\mu(1-k \delta)]^{k}+k[\mu(1-k \delta)]^{k-1}\right] e^{\mu(1-k \delta)} . \tag{17}
\end{equation*}
$$

Evaluating μ

Probability of Localization

- For a given $\delta, \mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]$ can be upper bounded by the first term of the summation in (17), leading to the lower bound:
$\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \geq 1-e^{-\delta \mu}[\mu(1-\delta)+1]$.

Probability of Localization

- For a given $\delta, \mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]$ can be upper bounded by the first term of the summation in (17), leading to the lower bound:

$$
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \geq 1-e^{-\delta \mu}[\mu(1-\delta)+1]
$$

- For small $\delta(<0.2)$ and relatively large $\mu(>33)$:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \approx 1-\mu e^{-\delta \mu}=1-(4 \lambda \bar{r} M) e^{-\delta(4 \lambda \bar{r} M)} \tag{18}
\end{equation*}
$$

Probability of Localization

- For a given $\delta, \mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]$ can be upper bounded by the first term of the summation in (17), leading to the lower bound:

$$
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \geq 1-e^{-\delta \mu}[\mu(1-\delta)+1]
$$

- For small $\delta(<0.2)$ and relatively large $\mu(>33)$:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \approx 1-\mu e^{-\delta \mu}=1-(4 \lambda \bar{r} M) e^{-\delta(4 \lambda \bar{r} M)} \tag{18}
\end{equation*}
$$

- Parameters λ, \bar{r} and M alone affect $\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right]$ through their product.

Probability of Localization

- For a given $\delta, \mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]$ can be upper bounded by the first term of the summation in (17), leading to the lower bound:

$$
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \geq 1-e^{-\delta \mu}[\mu(1-\delta)+1]
$$

- For small $\delta(<0.2)$ and relatively large $\mu(>33)$:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \approx 1-\mu e^{-\delta \mu}=1-(4 \lambda \bar{r} M) e^{-\delta(4 \lambda \bar{r} M)} \tag{18}
\end{equation*}
$$

- Parameters λ, \bar{r} and M alone affect $\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right]$ through their product.
- Best choice of Algorithm: CMA with 'Xnor-Centroid-Fine Grid' operations (simulation results...)

Probability of Localization

- For a given $\delta, \mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)}>\delta\right)\right]$ can be upper bounded by the first term of the summation in (17), leading to the lower bound:

$$
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \geq 1-e^{-\delta \mu}[\mu(1-\delta)+1]
$$

- For small $\delta(<0.2)$ and relatively large $\mu(>33)$:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right] \approx 1-\mu e^{-\delta \mu}=1-(4 \lambda \bar{r} M) e^{-\delta(4 \lambda \bar{r} M)} \tag{18}
\end{equation*}
$$

- Parameters λ, \bar{r} and M alone affect $\mathbb{E}\left[\operatorname{Pr}\left(V_{(N+1)} \leq \delta\right)\right]$ through their product.
- Best choice of Algorithm: CMA with 'Xnor-Centroid-Fine Grid' operations (simulation results...)
- Practical Interest: Choosing the optimal beacon density to meet a given localization accuracy with high probability.

3 - Simulation Setup

- We consider a square area \mathcal{A} of size (a, a), with $a=10$.
- Area \mathcal{A} divided into grid cell fine-ness varying from 5×5 to 100×100
- Location of the target, beacon nodes are chosen uniformly at random over \mathcal{A}.
- The free-space path loss model has path loss exponent $\eta=2$.
- Monte Carlo simulations of 10000 location instantiations.

3 - Simulation Setup

- We consider a square area \mathcal{A} of size (a, a), with $a=10$.
- Area \mathcal{A} divided into grid cell fine-ness varying from 5×5 to 100×100
- Location of the target, beacon nodes are chosen uniformly at random over \mathcal{A}.
- The free-space path loss model has path loss exponent $\eta=2$.
- Monte Carlo simulations of 10000 location instantiations.
- Goal 1: Verifying the minimum average area uncertainty.
- Goal 2: Selecting the 'best' localization algorithm.
- Goal 3: To compute beacon density required for achieving target localization to a desired accuracy for a specified number of the instantiations (say, 90\%) while varying parameters.

Performance comparison: Matrix vs Xnor, Centroid vs Random (Coarse Grid)

Performance comparison: Matrix vs Xnor, Centroid vs Random (Coarse Grid)

Performance comparison: Matrix vs Xnor, Centroid vs Random

For beacon radius 5

Coarse vs Fine grid

Coarse vs Fine grid

Coarse vs Fine grid

Coarse vs Fine grid approach

Coarse vs Fine grid approach

Performance Metric comparison

Performance Metric comparison

Additional Plots

Additional Plots

Results

Results

Comparison of deployment strategies

Delivery rate	+
Consumed energy per packet	+
End-to-end delay	\pm
Fault-tolerance related to detection errors	-
Fault-tolerance related to transient errors	-
Fault-tolerance related to global errors	-
Network lifespan based on coverage	\pm
Network lifespan based on connectivity	-
Network lifespan based on the quality of surveillance	-
	Figure: Source:ResearchGate

4 - Future Work

- Is there a way to connect Hamming distance b / w readings and the Euclidean distance b/w locations? (For noisy group testing)

4 - Future Work

- Is there a way to connect Hamming distance b / w readings and the Euclidean distance b / w locations? (For noisy group testing)
- In a stochastic Energy Harvesting setting, a reading of "0" could arise for two reasons. Given this dilemma, what is a good algorithm for estimating the target's location?

4 - Future Work

- Is there a way to connect Hamming distance b / w readings and the Euclidean distance b/w locations? (For noisy group testing)
- In a stochastic Energy Harvesting setting, a reading of "0" could arise for two reasons. Given this dilemma, what is a good algorithm for estimating the target's location?
- What is the optimal trade-off between number of power thresholds, beacon energy consumption (transmission range) and required localization accuracy in the above setting?

