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o Problem: Self-localization (within an area) of a target node using
RSS measurements from beacons transmitting from known locations.
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Introduction

o Problem: Self-localization (within an area) of a target node using
RSS measurements from beacons transmitting from known locations.

@ Motivation:

o Localization in indoor environments is challenging.
e Advances in WSN has enabled low-cost infrastructure deployment.
e Algorithms that are computationally efficient.

o Applications:
e Tracking position of a target on a factory floor or in a hospital

(intrusion detection, fire alarm).
e Enabling Coginitve Radio spectrum through geo-location of WSDs.

Prabhasa K (11Sc) Target Self-Localization to an Area March 25, 2017 3 /48



node deployment strategies

Simple diffusion (Ishizuka and Aida, 2004a)

C diffusion (Onur et al., 2007)

Simple

Discontinuous diffusion (Senoudi et al., 2012c¢)

Random Node
Placement Constant diffusion (Gupta and Kumar, 1999)

Strategies

R-random (Ishizuka and Aida, 2004a)

Compound Power-Law (Ishizuka and Aida, 2004b)

strategies

Exponential (Zhang and Hou, 2004)

Stensor (Sinha and Pal, 2007)

Figure: Source:ResearchGate

2017
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Comparison of deployment strategies

Connected
Coverage Connectivity coverage

Constant ++ ++ ++
diffusion

Continuous + + +
diffusion

R-random + + +
diffusion

Simple — — —
diffusion

Exponential —— —— —
diffusion

Figure: Source:ResearchGate
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Introduction

Approach: Overlaying the geographical area of interest with a virtual grid
translates the problem to one of Non-adaptive Group Testing.
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Introduction

Approach: Overlaying the geographical area of interest with a virtual grid
translates the problem to one of Non-adaptive Group Testing.

Primary Goal: Localize within a (i) region of uncertainty, or (ii) within a
required level of accuracy (with high probability) of the target’s true
location.

Tools: Group Testing, Order Statistics, Stochastic Geometry (PPP).

Notation:
@ K - Number of beacons
@ M - Number of power thresholds
@ 0 - Required Degree of Accuracy/Size of Grid Cells
e L - Number of grid points in each dimension (L £ [1])
@ ) - Beacon Density (K/L?)
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Figure: Measurement process for Target Self-Localization
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System Model

@ Beacon node b; transmits with a power Py. RSS is observed at the
target node Py ; 2 min(Py, Po(do/d;)").
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@ Beacon node b; transmits with a power Py. RSS is observed at the
target node Py ; 2 min(Py, Po(do/d;)").

@ Target node compares the RSS Py, ; with M predetermined intervals,
{102 (P4, PD]: j=1,...M, PR = Po}.
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System Model

@ Beacon node b; transmits with a power Py. RSS is observed at the
target node Py ; 2 min(Py, Po(do/d;)").

@ Target node compares the RSS Py, ; with M predetermined intervals,
{20 2 (PG, PP] - j=1,... .M, P =Py}

o The reading corresponding to b; and ZU) is set as follows:

. ji—1 j
y(J) L 1, Pg, ) > Prx,i > Pg) (1)
! 0, else.

Prabhasa K (11Sc) Target Self-Localization to an Area March 25, 2017 8 /48



System Model

@ Beacon node b; transmits with a power Py. RSS is observed at the
target node Py ; 2 min(Py, Po(do/d;)").

@ Target node compares the RSS Py, ; with M predetermined intervals,
{20 2 (PG, PP] - j=1,... .M, P =Py}

o The reading corresponding to b; and ZU) is set as follows:

. ji—1 j
y(J) L 1, Pg, ) > Prx,i > Pg) (1)
! 0, else.

Objective: (i) Minimize the area uncertainty, or (ii) Minimize beacon

density required to meet the desired localization accuracy (with high
probability).
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1 - Average Area Uncertainty

@ K beacon nodes deployed uniformly at random in the area of interest.
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1 - Average Area Uncertainty

@ K beacon nodes deployed uniformly at random in the area of interest.

o Lety; £ Zj’\iljyi(j), which can take M 4 1 possible values:

{0,1,..., M}. So the the set of all possible readings is
V£1{0,1,..., MK, with [V| = (M + 1)K,

Prabhasa K (11Sc) Target Self-Localization to an Area March 25, 2017 9 /48



1 - Average Area Uncertainty

@ K beacon nodes deployed uniformly at random in the area of interest.

o Lety; £ Zj’\iljyi(j), which can take M 4 1 possible values:
{0,1,..., M}. So the the set of all possible readings is
V£1{0,1,..., MK, with [V| = (M + 1)K,

@ Let P, be the probability that the target present at (x, ;) has a
reading v. Averaging over both target and beacon deployment, the

the average area uncertainty at (x, y¢) is:

Q=) E[P]. (2)

veV
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Performance Analysis (M = 1)

Theorem

When K beacon nodes, each with a power contour of radius r, are
distributed uniformly at random in A, the average area uncertainty in
localizing the target is given by

Q(q) ~ [+ (1 —a)]" ()

where g = E [X] and X is the r.v. representing coverage area of a single
beacon. Further, g* = 1/2 minimizes (3), and the corresponding beacon
radius is r* = 0.512 and the average area uncertainty is Q,(q*) = (1/2)X.
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Performance Analysis

Proof.

Suppose the first / entries of the reading v are ‘1’ and the remaining

(K — 1) entries are ‘0'. Since beacons are i.i.d. uniformly over A, the
probability of observing the reading v is P, = X/(1 — X)X~/

O
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Performance Analysis

Proof.

Suppose the first / entries of the reading v are ‘1’ and the remaining
(K — 1) entries are ‘0'. Since beacons are i.i.d. uniformly over A, the
probability of observing the reading v is P, = X/(1 — X)X~/

There are (’,() combinations of readings with / ones and K — | zeros.
Therefore, the expectation of ZVEV < over the target location, i.e., the
average area uncertainty in localization is given by

O

v
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Performance Analysis

Proof.

Suppose the first / entries of the reading v are ‘1’ and the remaining
(K — 1) entries are ‘0'. Since beacons are i.i.d. uniformly over A, the
probability of observing the reading v is P, = X/(1 — X)X~/

There are (’,() combinations of readings with / ones and K — | zeros.
Therefore, the expectation of ZVEV < over the target location, i.e., the
average area uncertainty in localization is given by

K
_ K\ v2vi1  ywy2\K—I
Q—Elg(,)m«l X)?) ]
—E[(X2+@-x))"]. (4)
L]

v
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Performance Analysis

Further, by Jensen's inequality, the lower bound on (4) is given by
Q> (£ +E[@-X)7)",
= (g% + (1—q)2+2 Var [X])" 2 Qp,

where g £ E[X]. In comparison to g% + (1 — q)?, the variance term is
nearly flat across different values of r:
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Further, by Jensen's inequality, the lower bound on (4) is given by

Q> (E[X?) +E[(1-X))",
= (2 + (1 — )2 +2 Var [X]) 2 Qu,

where g £ E[X]. In comparison to g% + (1 — q)?, the variance term is
nearly flat across different values of r:

Q(q) ~ (P +(1—q)?)". (5)
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Performance Analysis

Further, by Jensen's inequality, the lower bound on (4) is given by
Q> (£ +E[@-X)7)",
= (g% + (1—q)2+2 Var [X])" 2 Qp,

where g £ E[X]. In comparison to g% + (1 — q)?, the variance term is
nearly flat across different values of r:

Q(q) ~ (@ +(1-a)?)". (5)

g* = 1/2 minimizes (5) over g € [0, 1], and the corresponding beacon
radius is r* = 0.512, computed using

q=(1/2)r* — (8/3)r® + 7r?. (6)
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Performance Analysis

Theorem

When K beacon nodes, each with M power contours of radii
n<mn<..<rm<...<ry, aredistributed uniformly at random in A,
the average area uncertainty in localizing the target is given by

M K
Q@+ D (gm—m1)’+(1— CIM)2] (7)
m=2

where gm = E [Xy], m=1,2,..., M, and X,, is an r.v. representing the
area coverage of a single beacon with radius rp,,. The quantities
Im = w1 Mm=1,2,..., M, minimize (5), and the corresponding average

K
. . _ l e
area uncertainty is 0} = (m) . Note that, the beacon radii r},,

m=1,2,..., M, is obtained by inverse-mapping the g}, using (6).
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Average area uncertainty (mzj

Average Area Uncertainty in a 10mx10m grid
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2 - Column Matching Algorithm

@ For the test corresponding to the j threshold interval of the ith
beacon’s signal, the grid points in the annulus .A,(-J) are tested. Let it
be represented by agj) € {0,1}*X¢ where C £ L1,
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beacon’s signal, the grid points in the annulus .A,(-j) are tested. Let it
be represented by agj) € {0,1}*X¢ where C £ L1,

@ The entries corresponding to the points being tested are set to 1 and
the remaining entries are set to 0.
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2 - Column Matching Algorithm

@ For the test corresponding to the j threshold interval of the it
beacon’s signal, the grid points in the annulus A,(-J) are tested. Let it

be represented by agj) € {0,1}1XC, where C £ L;L,
@ The entries corresponding to the points being tested are set to 1 and
the remaining entries are set to 0.

@ The measurement process:
y = Ax, (8)

x € {0,1}¢*! - true position of the target.
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2 - Column Matching Algorithm

@ For the test corresponding to the j threshold interval of the it
beacon’s signal, the grid points in the annulus A,(-J) are tested. Let it

be represented by agj) € {0,1}1XC, where C £ L;L,
@ The entries corresponding to the points being tested are set to 1 and
the remaining entries are set to 0.

@ The measurement process:
y = Ax, (8)

x € {0,1}¢*! - true position of the target.

@ The Column Matching Algorithm attempts to match the columns of
A with test result vector y:

K = supp {max{y‘A -1, (y)'A}}, (9)
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Column Matching Algorithm (xnor)

@ Figure 1 - o x
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Figure: Target Localization in a 10x10 grid. Target shown by a yellow star.
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Performance Analysis

Lemma

When the beacon nodes are distributed as PPP with intensity A, the
number of beacon nodes with power contours of radius r intersecting any
vertical/horizontal line segment S is Poisson distributed with mean

w1 = A(2r). The total number of such intersections N on the line segment
S is approximately Poisson distributed with mean \(4r — mr?).

v
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Figure: Illustration of the beacon power contours intersecting a line
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Performance Analysis

When the beacon nodes are distributed as PPP with intensity \, the
number of beacon nodes with power contours of radius r intersecting any
vertical/horizontal line segment S is Poisson distributed with mean

w1 = A(2r). The total number of such intersections N on the line segment
S is approximately Poisson distributed with mean \(4r — mr?).

v

Proof.
Consider a region R formed by a rectangular strip of size 1 x 2r. The
average number of beacon nodes that intersect S is

p1 = M(Area of R) = A\(2r). (10)
The mean of the number of intersections on S is given by

1= 2X2r — 7r?) + X(wr?) = X(4r — 7r?). (11)
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Performance Analysis

Lemma

The cumulative distribution function (cdf) of the largest among the
spacings between successive ordered uniform r.v.s in the range [0, 1] is

given by
min (n+1,L—1) 1
Pr(Vip41) <6)=1— Z (—1)k—1<" i )(1 — k&)™, (12)
k=1

where n >0, § € (0,1) and L = [].
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Performance Analysis

The probability of the occurrence of at least one of the events V; > § can
be expressed as (Boole's formula)

n+1
Pr{U(\/,->5)} = Pr(V;>8) =Y Pr(V; >4,V; > 9)
i=1 i i<j
+... .+ (=D)"Pr(VA>0,Vo >06,..., Vyp1 > 0).
(13)
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Performance Analysis

The probability of the occurrence of at least one of the events V; > § can
be expressed as (Boole's formula)

n+1
Pr{U(\/,->5)} = Pr(V;>8) =Y Pr(V; >4,V; > 9)
i=1 i i<j
+... .+ (=D)"Pr(VA>0,Vo >06,..., Vyp1 > 0).
(13)

The joint distribution of k events V4 > 4, V| > § is symmetrical in V.
The union event UT(V; > ) is the same as (Vn+1) > 9).

min (n+1,L—1)

Pr( Vi) > 0) = > (~1)< (n—;(— 1) (1—ko)",  (14)

k=1
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Performance Analysis

Theorem

The average probability of the largest spacing between successive
intersections being less than or equal to the size of the grid cell, when the
number of intersections N is Poisson distributed with mean p, is given by

L1 ks, P
E[Pr(Vinin <8)] =1-) [(1 — k9) +k!k][ (1 — ko)) |
k=1

(15)

where § £ % is the size of the grid cell.
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Performance Analysis

E[Pr(Vini1) > 0)] =D Pr(Vint1) > )Pr(N = n)
n=0

Ol

i
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Performance Analysis

E[Pr(Vini1) > 0)] =D Pr(Vint1) > )Pr(N = n)
n=0
oo min (n+1,L—1)
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Performance Analysis

E[Pr(Vini1) > 0)] =D Pr(Vint1) > )Pr(N = n)
n=0
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Performance Analysis

7“2( B [Z (:111 k)l[ (1 = k&)]" + Z (n+1k—k)![“(1_k6)]n}
. i (16)
[]
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Performance Analysis

ﬂtz( l)k 1[

3 (::11 k),[ Wk + 3 Wk_k)![u(l—k(s)]n}

k=1 n=k—1 =k—1
(16)

The inner summation terms of (16) are Taylor series expansions of the
scaled exponential function in p(1 — kd), so

L-1

E [Pr(Vinsn > 8)) = e 30 ED a1 — ko) + k(1 = k)1, (17)

k=1

Ol

v
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Probability of Localization

@ For a given ¢, E [Pr( Vins1) > 5)] can be upper bounded by the first
term of the summation in (17), leading to the lower bound:

E [Pr(Vins1) <6)] = 1— e o1 [u(1 - 6) +1].
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Probability of Localization

@ For a given ¢, E [Pr( Vins1) > 5)] can be upper bounded by the first
term of the summation in (17), leading to the lower bound:

E[Pr(Vinsn < 0)] > 1 — e~ [u(1—4) +1].
@ For small § (< 0.2) and relatively large u (> 33):
E[Pr(Vins) < 0)] & 1— pe ™" =1~ (4AFM)e M) (18)
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Probability of Localization

@ For a given ¢, E [Pr( Vins1) > 5)] can be upper bounded by the first
term of the summation in (17), leading to the lower bound:

E [Pr(Vins1) <6)] = 1— e o1 [u(1 - 6) +1].
@ For small § (< 0.2) and relatively large u (> 33):
E [Pr( Vin+) < o] ~1- pe % =1 — (AXFM)e—*(A"M)  (1g)

@ Parameters A\, ¥ and M alone affect E [Pr(\/(N+1) < 5)] through their
product.
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Probability of Localization

@ For a given ¢, E [Pr( Vins1) > 5)] can be upper bounded by the first
term of the summation in (17), leading to the lower bound:

E [Pr(Vins1) <6)] = 1— e o1 [u(1 - 6) +1].
@ For small § (< 0.2) and relatively large u (> 33):
E [Pr( Vin+) < o] ~1- pe % =1 — (AXFM)e—*(A"M)  (1g)

@ Parameters A\, ¥ and M alone affect E [Pr( Vingr < 5)] through their
product.

@ Best choice of Algorithm: CMA with "Xnor-Centroid-Fine Grid'
operations (simulation results...)
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Probability of Localization

@ For a given ¢, E [Pr( Vins1) > 5)] can be upper bounded by the first
term of the summation in (17), leading to the lower bound:

E [Pr(Vins1) <6)] = 1— e o1 [u(1 - 6) +1].
@ For small 6 (< 0.2) and relatively large p (> 33):
E [Pr( Vin+) < o] ~1- pe % =1 — (AXFM)e—*(A"M)  (1g)

@ Parameters A\, ¥ and M alone affect E [Pr( Vingr < 5)] through their
product.

@ Best choice of Algorithm: CMA with "Xnor-Centroid-Fine Grid'
operations (simulation results...)

@ Practical Interest: Choosing the optimal beacon density to meet a
given localization accuracy with high probability.
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3 - Simulation Setup

e We consider a square area A of size (a, a), with a = 10.

o Area A divided into grid cell fine-ness varying from 5 x 5 to 100 x 100

@ Location of the target, beacon nodes are chosen uniformly at random
over A.

@ The free-space path loss model has path loss exponent n = 2.

@ Monte Carlo simulations of 10000 location instantiations.
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3 - Simulation Setup

We consider a square area A of size (a, a), with a = 10.

o Area A divided into grid cell fine-ness varying from 5 x 5 to 100 x 100

Location of the target, beacon nodes are chosen uniformly at random
over A.

The free-space path loss model has path loss exponent n = 2.
Monte Carlo simulations of 10000 location instantiations.
Goal 1: Verifying the minimum average area uncertainty.

Goal 2: Selecting the 'best’ localization algorithm.

Goal 3: To compute beacon density required for achieving target
localization to a desired accuracy for a specified number of the
instantiations (say, 90%) while varying parameters.
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Performance comparison: Matrix vs Xnor, Centroid vs

Random (Coarse Grid)

10x10 grid and beacon radius 3
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Performance comparison: Matrix vs Xnor, Centroid vs

Random (Coarse Grid)

10x10 grid
0.8 T T T
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matrix-random ||
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xnor-random
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Performance comparison: Matrix vs Xnor, Centroid vs

Random

For beacon radius 5

0.9 T T T T T T T T
=il matrix-centroid

0.8 =l matrix-random
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07 F == xnor-random

Probability of localising within a grid cell
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Coarse vs Fine grid

) Variation in beacon density using a 10x10 grid dictionary, M=1 ) Variation in beacon density using a 50x50 grid dictionary, M=1
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Coarse vs Fine grid

Variation in beacon radius using a 10x10 grid dictionary, M=1
8

Prob of localizing upto 1m accuracy in a 10mx10m grid
o

05 1 15 2 25 3 35 4 45 5
Beacon radius

Prabhasa K (I1Sc

Prob of localizing upto 1m accuracy in a 10mx10m grid

Target Self-Localization to an Area

Variation in beacon radius using a 50x50 grid dictionary, M=1
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Coarse vs Fine grid

Variation in grid dictionary size forr__ =1, M=1 Variation in grid dictionary size forr__ =1, M=1
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Coarse vs Fine grid approach

Variation in grid dictionary size forr__ =3, M=1 Variation in grid dictionary size forr__ =3, M=1

max

xnor-centre

max

0.25

Prob of localizing upto 1m accuracy in a 10mx10m grid
Prob of localizing upto 1m accuracy in a 10mx10m grid

06
0.05 d
05
e S r
-—r % —gy
o 0.4
50 5 60 65 70 75 80 8 90 95 100 50 s 60 65 70 75 80 8 90 95 100
Grid dictionary size Grid dictionary size

Prabhasa K (I1Sc Target Self-Localization to an Area 2017 39 /48




Coarse vs Fine grid approach

Variation in grid dictionary size forr__ =5, M=1 Variation in grid dictionary size forr__ =5, M=1
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Performance Metric comparison
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Performance Metric comparison
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Additional Plots

—— M=1-xnor-centroid
== M=2-xnor-centroid
== \=5-xnor-centroid
== Theory

98 T T T " 98
o o o =
= | ¢ 4 3
8 961 8
2 2
D941 =
i a c 94
£ ol —— \=5-xnor-centroid | | =
g ==& Theory =
s Z 92
Q90 1 %
g 8
> 88 F 4 9%
< £
= N
T 86 1 ® 88
S 8
584 L 1%
z 28
5 82f 1 3
g 3
2 w0 | ge
o o
78 . . . . . . . 52
52 54 56 58 60 62 64 66 68 31

Prabhasa K (IS

Product of node density and number of threshold levels

ocalization to an Area

32

Product of node density and number of threshold levels

33

34

35

36

37

38

39 40

2017

4




Additional Plots
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Varymg P W|th accuracy, for LHS 0.9, Grid dict 50x50, Fraction 1 Varying P‘ﬂcwith accuracy, for LHS 0.9, Grid dict 50x50, Fraction 1
09
0.96

gos g
® ®
E] £ D=1.5
g g 0.94 =
807 k
= = P=0.85
= = -
=06 £ 002
2 =1 D=0.75
2 2
2 o
@ 05 o o9 D=0.25

04

0.88
03
05 2 1 15 2 25 3 35 4 45 5
Beacun rad\us Beacon radius

2017 45 / 48

Prabhasa K (I1Sc Target Self-Localization to an Area



Varying PIﬂc with beacon radius, for LHS 0.9, Grid dict 50x50, Fraction 1 Varying PIﬂc with beacon radius, for LHS 0.9, Grid dict 50x50, Fraction 1
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Comparison of deployment strategies

Constant diffusion Simple diffusion R-random
Delivery rate + + +
Consumed energy per packet + + +
End-to-end delay + + +
Fault-tolerance related to detection errors — + +
Fault-tolerance related to transient errors - + +
Fault-tolerance related to global errors - + +
Network lifespan based on coverage + + +
Network lifespan based on connectivity - + +
Network lifespan based on the quality of surveillance - + +

Figure: Source:ResearchGate
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4 - Future Work

@ Is there a way to connect Hamming distance b/w readings and the
Euclidean distance b/w locations? (For noisy group testing)
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@ In a stochastic Energy Harvesting setting, a reading of “0" could arise
for two reasons. Given this dilemma, what is a good algorithm for
estimating the target's location?
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4 - Future Work

@ Is there a way to connect Hamming distance b/w readings and the
Euclidean distance b/w locations? (For noisy group testing)

@ In a stochastic Energy Harvesting setting, a reading of “0" could arise
for two reasons. Given this dilemma, what is a good algorithm for
estimating the target's location?

@ What is the optimal trade-off between number of power thresholds,
beacon energy consumption (transmission range) and required
localization accuracy in the above setting?
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