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Introduction

Problem: Self-localization (within an area) of a target node using
RSS measurements from beacons transmitting from known locations.

Motivation:
Localization in indoor environments is challenging.
Advances in WSN has enabled low-cost infrastructure deployment.
Algorithms that are computationally efficient.

Applications:
Tracking position of a target on a factory floor or in a hospital
(intrusion detection, fire alarm).
Enabling Coginitve Radio spectrum through geo-location of WSDs.
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Introduction

Approach: Overlaying the geographical area of interest with a virtual grid
translates the problem to one of Non-adaptive Group Testing.

Primary Goal: Localize within a (i) region of uncertainty, or (ii) within a
required level of accuracy (with high probability) of the target’s true
location.
Tools: Group Testing, Order Statistics, Stochastic Geometry (PPP).

Notation:

K - Number of beacons

M - Number of power thresholds

δ - Required Degree of Accuracy/Size of Grid Cells

L - Number of grid points in each dimension (L ≜ ⌈1δ ⌉)
λ - Beacon Density (K/L2)
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Figure: Measurement process for Target Self-Localization
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System Model

Beacon node bi transmits with a power P0. RSS is observed at the
target node Prx ,i ≜ min(P0,P0(d0/di )

η).

Target node compares the RSS Prx ,i with M predetermined intervals,{
I(j) ≜

(
P
(j−1)
th ,P

(j)
th

]
: j = 1, . . . ,M,P

(0)
th = P0

}
.

The reading corresponding to bi and I(j) is set as follows:

y
(j)
i ≜

{
1, P

(j−1)
th > Prx ,i ≥ P

(j)
th

0, else.
(1)

Objective: (i) Minimize the area uncertainty, or (ii) Minimize beacon
density required to meet the desired localization accuracy (with high
probability).
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1 - Average Area Uncertainty

K beacon nodes deployed uniformly at random in the area of interest.

Let νi ≜
∑M

j=1 jy
(j)
i , which can take M + 1 possible values:

{0, 1, . . . ,M}. So the the set of all possible readings is
V ≜ {0, 1, . . . ,M}K , with |V| = (M + 1)K .

Let Pν be the probability that the target present at (xt , yt) has a
reading ν. Averaging over both target and beacon deployment, the
the average area uncertainty at (xt , yt) is:

Ω =
∑
ν∈V

E
[
P2
ν

]
. (2)
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Performance Analysis (M = 1)

Theorem

When K beacon nodes, each with a power contour of radius r , are
distributed uniformly at random in A, the average area uncertainty in
localizing the target is given by

Ωa(q) ≈
[
q2 + (1− q)2

]K
(3)

where q ≜ E [X ] and X is the r.v. representing coverage area of a single
beacon. Further, q∗ = 1/2 minimizes (3), and the corresponding beacon
radius is r∗ = 0.512 and the average area uncertainty is Ωa(q

∗) = (1/2)K .
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Performance Analysis

Proof.

Suppose the first l entries of the reading ν are ‘1’ and the remaining
(K − l) entries are ‘0’. Since beacons are i.i.d. uniformly over A, the
probability of observing the reading ν is Pν = X l(1− X )K−l .

There are
(K
l

)
combinations of readings with l ones and K − l zeros.

Therefore, the expectation of
∑

ν∈V P2
ν over the target location, i.e., the

average area uncertainty in localization is given by

Ω = E

[
K∑
l=0

(
K

l

)
(X 2)l((1− X )2)K−l

]
,

= E
[(
X 2 + (1− X )2

)K]
. (4)
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Performance Analysis

Proof.

Further, by Jensen’s inequality, the lower bound on (4) is given by

Ω ≥
(
E
[
X 2

]
+ E

[
(1− X )2

])K
,

=
(
q2 + (1− q)2 + 2 Var [X ]

)K ≜ Ωlb,

where q ≜ E[X ]. In comparison to q2 + (1− q)2, the variance term is
nearly flat across different values of r :

Ωa(q) ≈
(
q2 + (1− q)2

)K
. (5)

q∗ = 1/2 minimizes (5) over q ∈ [0, 1], and the corresponding beacon
radius is r∗ = 0.512, computed using

q = (1/2)r4 − (8/3)r3 + πr2. (6)
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(1− X )2

])K
,

=
(
q2 + (1− q)2 + 2 Var [X ]

)K ≜ Ωlb,

where q ≜ E[X ]. In comparison to q2 + (1− q)2, the variance term is
nearly flat across different values of r :

Ωa(q) ≈
(
q2 + (1− q)2

)K
. (5)

q∗ = 1/2 minimizes (5) over q ∈ [0, 1], and the corresponding beacon
radius is r∗ = 0.512, computed using

q = (1/2)r4 − (8/3)r3 + πr2. (6)
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Performance Analysis

Theorem

When K beacon nodes, each with M power contours of radii
r1 < r2 < . . . < rm < . . . < rM , are distributed uniformly at random in A,
the average area uncertainty in localizing the target is given by

Ωa ≈

[
q21 +

M∑
m=2

(qm − qm−1)
2 + (1− qM)2

]K

(7)

where qm ≜ E [Xm], m = 1, 2, . . . ,M, and Xm is an r.v. representing the
area coverage of a single beacon with radius rm. The quantities
q∗m = m

M+1 , m = 1, 2, . . . ,M, minimize (5), and the corresponding average

area uncertainty is Ω∗
a =

(
1

M+1

)K
. Note that, the beacon radii r∗m,

m = 1, 2, . . . ,M, is obtained by inverse-mapping the q∗m using (6).
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Figure: Outer loop Target, Inner loop Beacons

Prabhasa K (IISc) Target Self-Localization to an Area March 25, 2017 15 / 48



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Result

Figure: Outer loop Beacons, Inner loop Target

Prabhasa K (IISc) Target Self-Localization to an Area March 25, 2017 16 / 48



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Result

Figure: Joint deployment
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2 - Column Matching Algorithm

For the test corresponding to the j th threshold interval of the i th

beacon’s signal, the grid points in the annulus A(j)
i are tested. Let it

be represented by a
(j)
i ∈ {0, 1}1×C , where C ≜ L1L2

The entries corresponding to the points being tested are set to 1 and
the remaining entries are set to 0.
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2 - Column Matching Algorithm

For the test corresponding to the j th threshold interval of the i th

beacon’s signal, the grid points in the annulus A(j)
i are tested. Let it

be represented by a
(j)
i ∈ {0, 1}1×C , where C ≜ L1L2

The entries corresponding to the points being tested are set to 1 and
the remaining entries are set to 0.

The measurement process:

y = Ax, (8)

x ∈ {0, 1}C×1 - true position of the target.

The Column Matching Algorithm attempts to match the columns of
A with test result vector y:

K = supp {max{ytA− 1
algo

(yc)tA}}, (9)
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Figure: Target Localization in a 10x10 grid. Target shown by a yellow star.
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Performance Analysis

Lemma

When the beacon nodes are distributed as PPP with intensity λ, the
number of beacon nodes with power contours of radius r intersecting any
vertical/horizontal line segment S is Poisson distributed with mean
µ1 = λ(2r). The total number of such intersections N on the line segment
S is approximately Poisson distributed with mean λ(4r − πr2).
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Figure: Illustration of the beacon power contours intersecting a line
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Performance Analysis

Lemma

When the beacon nodes are distributed as PPP with intensity λ, the
number of beacon nodes with power contours of radius r intersecting any
vertical/horizontal line segment S is Poisson distributed with mean
µ1 = λ(2r). The total number of such intersections N on the line segment
S is approximately Poisson distributed with mean λ(4r − πr2).

Proof.

Consider a region R formed by a rectangular strip of size 1× 2r . The
average number of beacon nodes that intersect S is

µ1 = λ(Area of R) = λ(2r). (10)

The mean of the number of intersections on S is given by

µ = 2λ(2r − πr2) + λ(πr2) = λ(4r − πr2). (11)
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Performance Analysis

Lemma

The cumulative distribution function (cdf) of the largest among the
spacings between successive ordered uniform r.v.s in the range [0, 1] is
given by

Pr(V(n+1) ≤ δ) = 1−
min (n+1,L−1)∑

k=1

(−1)k−1

(
n + 1

k

)
(1− kδ)n, (12)

where n ≥ 0, δ ∈ (0, 1) and L ≜ ⌈1δ ⌉.
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Performance Analysis

Proof.

The probability of the occurrence of at least one of the events Vi > δ can
be expressed as (Boole’s formula)

Pr

{
n+1∪
i=1

(Vi > δ)

}
=

∑
i

Pr(Vi > δ)−
∑
i<j

Pr(Vi > δ,Vj > δ)

+ . . .+ (−1)nPr(V1 > δ,V2 > δ, . . . ,Vn+1 > δ).
(13)

The joint distribution of k events V1 > δ,Vk > δ is symmetrical in Vi .
The union event ∪n+1

i=1 (Vi > δ) is the same as (V(n+1) > δ).

Pr(V(n+1) > δ) =

min (n+1,L−1)∑
k=1

(−1)k−1

(
n + 1

k

)
(1− kδ)n, (14)
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Performance Analysis

Theorem

The average probability of the largest spacing between successive
intersections being less than or equal to the size of the grid cell, when the
number of intersections N is Poisson distributed with mean µ, is given by

E
[
Pr(V(N+1) ≤ δ)

]
= 1−

L−1∑
k=1

e−kδµ [µ(1− kδ) + k] [−µ(1− kδ)]k−1

k!
,

(15)

where δ ≜ 1
L is the size of the grid cell.
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Performance Analysis

Proof.

E
[
Pr(V(N+1) > δ)

]
=

∞∑
n=0

Pr(V(n+1) > δ)Pr(N = n)

=
∞∑
n=0

min (n+1,L−1)∑
k=1

(−1)k−1

(
n + 1

k

)
(1− kδ)n

e−µµn

n!

=
L−1∑
k=1

∞∑
n=k−1

(−1)k−1

(
n + 1

k

)
(1− kδ)n

e−µµn

n!

= e−µ
L−1∑
k=1

(−1)k−1

k!

∞∑
n=k−1

(n + 1)

(n + 1− k)!
[µ(1− kδ)]n
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Pr(V(n+1) > δ)Pr(N = n)

=
∞∑
n=0

min (n+1,L−1)∑
k=1

(−1)k−1

(
n + 1

k

)
(1− kδ)n

e−µµn

n!

=
L−1∑
k=1

∞∑
n=k−1

(−1)k−1

(
n + 1

k

)
(1− kδ)n

e−µµn

n!

= e−µ
L−1∑
k=1

(−1)k−1

k!

∞∑
n=k−1

(n + 1)

(n + 1− k)!
[µ(1− kδ)]n
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Performance Analysis

Proof.

= e−µ
L−1∑
k=1

(−1)k−1

k!

[
∞∑

n=k−1

(n + 1− k)

(n + 1− k)!
[µ(1− kδ)]n +

∞∑
n=k−1

k

(n + 1− k)!
[µ(1− kδ)]n

]
(16)

The inner summation terms of (16) are Taylor series expansions of the
scaled exponential function in µ(1− kδ), so

E
[
Pr(V(N+1) > δ)

]
= e−µ

L−1∑
k=1

(−1)k−1

k!
[[µ(1− kδ)]k + k[µ(1− kδ)]k−1]eµ(1−kδ). (17)
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Probability of Localization

For a given δ, E
[
Pr(V(N+1) > δ)

]
can be upper bounded by the first

term of the summation in (17), leading to the lower bound:

E
[
Pr(V(N+1) ≤ δ)

]
≥ 1− e−δµ[µ(1− δ) + 1].

For small δ (< 0.2) and relatively large µ (> 33):

E
[
Pr(V(N+1) ≤ δ)

]
≈ 1− µe−δµ = 1− (4λr̄M)e−δ(4λr̄M) (18)

Parameters λ, r̄ and M alone affect E
[
Pr(V(N+1) ≤ δ)

]
through their

product.

Best choice of Algorithm: CMA with ’Xnor-Centroid-Fine Grid’
operations (simulation results...)

Practical Interest: Choosing the optimal beacon density to meet a
given localization accuracy with high probability.
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3 - Simulation Setup

We consider a square area A of size (a, a), with a = 10.

Area A divided into grid cell fine-ness varying from 5× 5 to 100× 100

Location of the target, beacon nodes are chosen uniformly at random
over A.

The free-space path loss model has path loss exponent η = 2.

Monte Carlo simulations of 10000 location instantiations.

Goal 1: Verifying the minimum average area uncertainty.

Goal 2: Selecting the ’best’ localization algorithm.

Goal 3: To compute beacon density required for achieving target
localization to a desired accuracy for a specified number of the
instantiations (say, 90%) while varying parameters.
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Performance comparison: Matrix vs Xnor, Centroid vs
Random (Coarse Grid)
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4 - Future Work

Is there a way to connect Hamming distance b/w readings and the
Euclidean distance b/w locations? (For noisy group testing)

In a stochastic Energy Harvesting setting, a reading of “0” could arise
for two reasons. Given this dilemma, what is a good algorithm for
estimating the target’s location?

What is the optimal trade-off between number of power thresholds,
beacon energy consumption (transmission range) and required
localization accuracy in the above setting?
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