Journal Watch

IEEE Transactions on Wireless Communications - Aug 2017

Prabhasa K

SPC Lab Department of Electrical Communication Engineering Indian Institute of Science

19th Aug, 2017

1. Joint Power Optimization for D2D Communication in Cellular Networks With Interference Control Authors: Ali Ramezani-Kebrya, Min Dong, Ben Liang, Gary Boudreau, and S. Hossein Seyedmehdi

 Goal: Jointly optimize the power of a CU and a D2D pair for their sum rate maximization (under optimal BS RX BF), while satisfying (i) minimum SINR (ii) worst-case ICI limit in *b* neighboring cells. 1. Joint Power Optimization for D2D Communication in Cellular Networks With Interference Control Authors: Ali Ramezani-Kebrya, Min Dong, Ben Liang, Gary Boudreau, and S. Hossein

- Seyedmehdi
 - Goal: Jointly optimize the power of a CU and a D2D pair for their sum rate maximization (under optimal BS RX BF), while satisfying (i) minimum SINR (ii) worst-case ICI limit in *b* neighboring cells.

• Assumptions:

- Uplink resource sharing
- Users and BS 1, N antennas respectively
- Orthogonal Resource Allocation among CUs
- Perfect knowledge of all channels

1. Joint Power Optimization for D2D Communication in Cellular Networks With Interference Control Authors: Ali Ramezani-Kebrya, Min Dong, Ben Liang, Gary Boudreau, and S. Hossein Sevedmehdi

 Goal: Jointly optimize the power of a CU and a D2D pair for their sum rate maximization (under optimal BS RX BF), while satisfying (i) minimum SINR (ii) worst-case ICI limit in *b* neighboring cells.

• Assumptions:

- Uplink resource sharing
- Users and BS 1, N antennas respectively
- Orthogonal Resource Allocation among CUs
- Perfect knowledge of all channels
- **Approach:** (i) Check for D2D admissibility under given constraints (ii) Joint power control under assumption of D2D admission.

• SINR at D2D RX:

$$\gamma_D = \frac{P_D |h_D|^2}{\sigma_D^2 + P_C |g_C|^2}$$

Prabhasa K (IISc)

19th Aug, 2017 3 / 19

э

<ロ> (日) (日) (日) (日) (日)

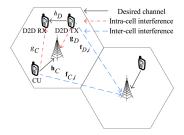
(1)

• SINR at D2D RX:

$$\gamma_D = \frac{P_D |h_D|^2}{\sigma_D^2 + P_C |g_C|^2}$$

• SINR at BS from CU:

$$\gamma_C = \frac{P_C |\mathbf{w}^H \mathbf{h}_C|^2}{\sigma^2 + P_D |\mathbf{w}^H \mathbf{g}_D|^2}$$


Image: A match a ma

э

- ∢ ≣ →

(1)

(2)

• SINR at D2D RX:

$$\gamma_D = \frac{P_D |h_D|^2}{\sigma_D^2 + P_C |g_C|^2}$$

• SINR at BS from CU:

$$\gamma_C = \frac{P_C |\mathbf{w}^H \mathbf{h}_C|^2}{\sigma^2 + P_D |\mathbf{w}^H \mathbf{g}_D|^2}$$
(2)

• Inter-Cell Interference (ICI)

$$P_{\mathcal{I},i} = P_C \|\mathbf{f}_{C,i}\|^2 + P_D \|\mathbf{f}_{D,i}\|^2_{\text{for a state st$$

Prabhasa K (IISc)

Journal Watch

(1)

P1:
$$\max_{P_D, P_C, \mathbf{w}} \log(1 + \gamma_C) + \log(1 + \gamma_D)$$

s.t
$$\gamma_C \ge \tilde{\gamma}_C, \qquad (4)$$
$$\gamma_D \ge \tilde{\gamma}_D, \qquad (5)$$
$$P_C \le P_C^{\max}, P_D \le P_D^{\max}, \qquad (6)$$
$$P_{\mathcal{I}, i} \le \tilde{\mathcal{I}}, \ i = 1, \cdots, b \qquad (7)$$

$$\begin{array}{ccc} \textbf{P1:} & \max_{P_D, P_C, \textbf{w}} & \log(1 + \gamma_C) + \log(1 + \gamma_D) \\ & \text{s.t} & \gamma_C \geq \tilde{\gamma}_C, & (4) \\ & \gamma_D \geq \tilde{\gamma}_D, & (5) \\ & P_C \leq P_C^{\max}, \ P_D \leq P_D^{\max}, & (6) \\ & P_{\mathcal{I}, i} \leq \tilde{\mathcal{I}}, \ i = 1, \cdots, b & (7) \end{array}$$

Objective: Optimize (P_D, P_C, \mathbf{w})

Image: A math a math

$$\begin{array}{ccc} \textbf{P1:} & \max_{P_D, P_C, \textbf{w}} & \log(1 + \gamma_C) + \log(1 + \gamma_D) \\ & \text{s.t} & \gamma_C \geq \tilde{\gamma}_C, & (4) \\ & \gamma_D \geq \tilde{\gamma}_D, & (5) \\ & P_C \leq P_C^{\max}, \ P_D \leq P_D^{\max}, & (6) \\ & P_{\mathcal{I}, i} \leq \tilde{\mathcal{I}}, \ i = 1, \cdots, b & (7) \end{array}$$

Objective: Optimize (P_D, P_C, \mathbf{w})

- Admissibility For any given (P_D, P_C) , find optimal beam vector \mathbf{w}^o
- Optimality Let x ≜ P_D, y ≜ P_C. Evaluate (P_D^o, P_C^o) for b = 1 and b > 1 (approximation of ICI constraints)

P2:
$$\max_{(x,y)} \log \mathcal{R}(x,y)$$
(8)
s.t
$$y \left(1 - \frac{K_1 x}{K_2 + x}\right) l \ge \tilde{\gamma}_C,$$
(9)
$$\frac{ax}{\sigma_D^2 + K_3 y} \ge \tilde{\gamma}_D,$$
(10)

$$y \le P_C^{\max}, \quad x \le P_D^{\max},$$
 (11)

$$c_1 y + c_2 x \le 1 \tag{12}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

where
$$\mathcal{R}(x,y) \triangleq \left(1 + \frac{ax}{\sigma_D^2 + K_3 y}\right) \left(1 + y \left(1 - \frac{K_1 x}{K_2 + x}\right)I\right),$$

3

Lemma: The optimal power solution pair (x^o, y^o) is at the vertical, horizontal, or tilted boundary of A_{xy} , given by $x = P_D^{\max}$, $y = P_C^{\max}$, or $c_1y + c_2x = 1$, respectively.

Lemma: The optimal power solution pair (x^o, y^o) is at the vertical, horizontal, or tilted boundary of A_{xy} , given by $x = P_D^{\max}$, $y = P_C^{\max}$, or $c_1y + c_2x = 1$, respectively.

Contributions:

- Proposed algorithm is optimal when ICI to a single neighboring cell is considered. For multiple neighboring cells, we provide an upper bound on the performance loss.
- Formulate an offline (non convex) optimization problem and propose an iterative algorithm to solve it.
- Consider the scenario of multiple CUs and D2D pairs, and formulate the joint power control and CU-D2D matching problem.

Multiple CUs and D2D pairs:

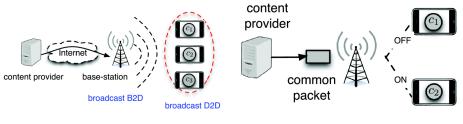
$$\begin{array}{ll} \textbf{P3:} & \max_{\textbf{P,w,x}} & \sum_{k \in \mathcal{D}} \sum_{j \in \mathcal{C}} \log(1 + \gamma_{C,j}) + x_{k,j} \log(1 + \gamma_{D,k}) \\ & \text{s.t} & \frac{P_{C,j} |\textbf{w}_j^H \textbf{h}_{C,j}|^2}{\sigma^2 + x_{k,j} P_{D,k} |\textbf{w}_j^H \textbf{g}_{D,k}|^2} \geq \tilde{\gamma}_C, \quad \forall j \in \mathcal{C} \\ & \frac{P_{D,k} |h_{D,k}|^2}{\sigma^2_{D,k} + x_{k,j} P_{C,j} |g_{j,k}|^2} \geq \tilde{\gamma}_D, \ \forall k \in \mathcal{D} \\ & P_{C,j} \leq P_C^{\max}, \ P_{D,k} \leq P_D^{\max}, \ \forall j \in \mathcal{C}, \ k \in \mathcal{D} \\ & P_{\mathcal{I},i,j} \leq \tilde{\mathcal{I}}, \quad \forall j \in \mathcal{C}, \ i = 1, \cdots, b \\ & \sum_{k \in \mathcal{D}} x_{k,j} \leq 1, \quad \sum_{j \in \mathcal{C}} x_{k,j} \leq 1, \ \forall j \in \mathcal{C}, \ k \in \mathcal{D} \\ & x_{k,j} \in \{0,1\}, \quad \forall j \in \mathcal{C}, \ k \in \mathcal{D} \end{array}$$

(日) (日) (日) (日)

э

• **Goal:** Employ social grouping (users with *common interest*) and obtain optimal equal-reciprocal scheme that maximizes the shared content and per-user utility.

- **Goal:** Employ social grouping (users with *common interest*) and obtain optimal equal-reciprocal scheme that maximizes the shared content and per-user utility.
- **Motivation:** Exploiting the hybrid B2D and D2D networks for local content sharing by proposing a non-monetary incentive, assuming selfish users. Traditional incentive schemes are unicast-based.


- **Goal:** Employ social grouping (users with *common interest*) and obtain optimal equal-reciprocal scheme that maximizes the shared content and per-user utility.
- **Motivation:** Exploiting the hybrid B2D and D2D networks for local content sharing by proposing a non-monetary incentive, assuming selfish users. Traditional incentive schemes are unicast-based.

• Assumptions:

- Users with heterogeneous B2D channels (ON/OFF)
- No user mobility
- BS knows channel states
- BS TX at most 1 packet/slot. Users cannot TX, RX simultaneously
- B2D, D2D operate on different channels (half-duplex)
- Users are rational, not malicious

		_	
N	Total number of users in consideration		
$\mathbf{s}(t) = (s_1(t), \cdots s_N(t))$	Channel state vector at time slot t ,]	
	where $s_i(t)$ is the channel state for user		
	c_i .		
$p_{e,i}$	B2D channel error probability for user	1	
	c_i , while <i>i</i> is ignored for the symmetric		
	networks.		
$T_{\neq}^{(N)}$	Completion time for delivering a com-	1	
+	mon packet employing the unicast		
	communications, while N is ignored		
	for $N = 2$.		
$T^{(N)}_{=}$	Completion time for delivering a com-	1	
_	mon packet employing the broadcast		
	communications, while N is ignored		
	for $N = 2$.		
$T_{\cup}^{(N)}$	Completion time for delivering a com-	1	
0	mon packet employing the broad-		
	cast communications along with social		
	grouping, while N is ignored for $N =$		
	2.		
$p_{i ightarrow \mathbf{R}}$	Probability that user c_i shares the com-	1	
_	mon packet with the users in R.		
λ	Arrival rate of common interests at the	1	
	BS.		
Λ	Equal-reciprocal stability region.	1	
	<日> <堕> <回>	<	୬ବନ

Prabhasa K (IISc)

Figure : Hybrid Network Model

Figure : 2 users with common interest

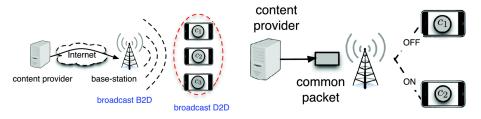


Figure : Hybrid Network Model

Figure : 2 users with common interest

$$\begin{split} T_{=} = p_e^2 (1+T_{=}) + (1-p_e)^2 \cdot 1 + 2p_e (1-p_e) \left(1+\frac{1}{1-p_e}\right) &= \frac{2p_e+1}{1-p_e^2}, \\ T_{\neq} = p_e^2 (1+T_{\neq}) + (1-p_e^2) \left(1+\frac{1}{1-p_e}\right) &= \frac{p_e+2}{1-p_e^2}, \end{split}$$

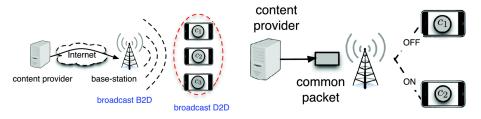


Figure : Hybrid Network Model

Figure : 2 users with common interest

$$\begin{split} T_{=} = p_e^2 (1+T_{=}) + (1-p_e)^2 \cdot 1 + 2p_e (1-p_e) \left(1 + \frac{1}{1-p_e}\right) &= \frac{2p_e + 1}{1-p_e^2}, \\ T_{\neq} = p_e^2 (1+T_{\neq}) + (1-p_e^2) \left(1 + \frac{1}{1-p_e}\right) &= \frac{p_e + 2}{1-p_e^2}, \\ R_{\neq/=} &:= \frac{T_{\neq}}{T_{=}} = \frac{p_e + 2}{2p_e + 1}. \\ R_{=/\cup} &:= \frac{T_{=}}{T_{\cup}^*} = \frac{2p_e + 1}{-2p_e^2 + 2p_e + 1}. \end{split}$$

Prabhasa K (IISc)

$$T^{(n)}_{=} = \sum_{i=0}^{n} {n \choose i} p^{i}_{e} (1 - p_{e})^{N-i} (1 + T^{(i)}_{=}),$$

Prabhasa K (IISc)

19th Aug, 2017 11 / 19

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$T_{=}^{(n)} = \sum_{i=0}^{n} {n \choose i} p_{e}^{i} (1 - p_{e})^{N-i} (1 + T_{=}^{(i)}),$$

Lemma: The optimal equal reciprocal scheme for the large symmetric network is to pick a user for sharing with the equal probability, i.e., for user c_i , the sharing probability is

$$p^*_{i
ightarrow \mathbf{R}} = (N - |\mathbf{R}|)^{-1}.$$

$$T_{=}^{(n)} = \sum_{i=0}^{n} {n \choose i} p_e^i (1 - p_e)^{N-i} (1 + T_{=}^{(i)}),$$

Lemma: The optimal equal reciprocal scheme for the large symmetric network is to pick a user for sharing with the equal probability, i.e., for user c_i , the sharing probability is

$$p^*_{i
ightarrow \mathbf{R}} = (N - |\mathbf{R}|)^{-1}.$$

Lemma: When $p_e < 0.5$, T_{\cup}^* increases in N . When $p_e > 0.5$, T_{\cup}^* decreases in N . When $p_e = 0.5$, $T_{\cup}^* = 2$ for all N . Moreover, $T_{\cup}^* \to 2$ when $N \to \infty$, independent of p_e .

$$T_{=}^{(n)} = \sum_{i=0}^{n} {n \choose i} p_{e}^{i} (1 - p_{e})^{N-i} (1 + T_{=}^{(i)}),$$

Lemma: The optimal equal reciprocal scheme for the large symmetric network is to pick a user for sharing with the equal probability, i.e., for user c_i , the sharing probability is

$$p^*_{i
ightarrow \mathbf{R}} = (N - |\mathbf{R}|)^{-1}.$$

Lemma: When $p_e < 0.5$, T_{\cup}^* increases in N . When $p_e > 0.5$, T_{\cup}^* decreases in N . When $p_e = 0.5$, $T_{\cup}^* = 2$ for all N . Moreover, $T_{\cup}^* \to 2$ when $N \to \infty$, independent of p_e .

Lemma: The incentivized social group has a performance loss compared with the full cooperation

$$T^*_{\cup} - T_f = rac{\Delta}{1 - (p_{e,2} - \Delta)p_{e,2}} \left(rac{1}{1 - p_{e,2}} - 1
ight),$$

where $\Delta = p_{e,2} - -p_{e,1}$

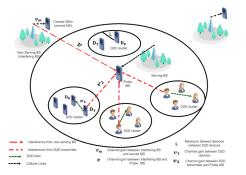
Approach:

- Evaluate completion time for different scenarios. Compute improvement ratios.
- Employ equal-reciprocal incentives and illustrate performance for symmetric and asymmetric cases.

Approach:

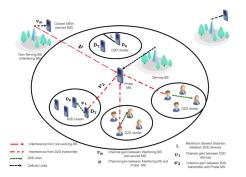
- Evaluate completion time for different scenarios. Compute improvement ratios.
- Employ equal-reciprocal incentives and illustrate performance for symmetric and asymmetric cases.

Contributions:


- Consider a practical *MicroCast* network scenario and propose the equal-reciprocal incentive scheme to motivate social grouping, which improved network performance.
- The optimal equal-reciprocal mechanism is a win-win policy that improves the performance of both BSs and local users.
- Propose on-line scheduling algorithms that dynamically select a user to share content (additional 1-bit information).

3. Analytical Characterization of Device-to-Device and Cellular Networks Coexistence Authors: Ashraf Al-Rimawi and Davide Dardari

Goal: Evaluate the amount of (downlink) traffic offloaded through D2D communications while considering the effect of power control, users spatial distribution, shadowing and random base station deployment.


3. Analytical Characterization of Device-to-Device and Cellular Networks Coexistence Authors: Ashraf Al-Rimawi and Davide Dardari

Goal: Evaluate the amount of (downlink) traffic offloaded through D2D communications while considering the effect of power control, users spatial distribution, shadowing and random base station deployment.

3. Analytical Characterization of Device-to-Device and Cellular Networks Coexistence Authors: Ashraf Al-Rimawi and Davide Dardari

Goal: Evaluate the amount of (downlink) traffic offloaded through D2D communications while considering the effect of power control, users spatial distribution, shadowing and random base station deployment.

• Motivation:

- HetNets Interference Mgmt
- $\bullet \ \mathsf{Hex} \ \mathsf{cells} \to \mathsf{Sto-Geo}$
- HPPP unrealistic for D2D

• Assumptions:

- One D2D link active at a time, without violating *SINR_{min}* constraint
- D2D groups \rightarrow HPPP. D2D users \rightarrow arbitrary spatial model

イロト イ押ト イヨト イヨト

Prabhasa K (IISc)

• SINR at probe MS:

SINR =
$$\frac{P_{u}}{\sum_{i=0}^{n} P_{i} + \sum_{j=0}^{m} P_{j}^{(d)} + \sigma_{0}^{2}}$$

3

Image: A math a math

• SINR at probe MS:

SINR =
$$\frac{P_{u}}{\sum_{i=0}^{n} P_{i} + \sum_{j=0}^{m} P_{j}^{(d)} + \sigma_{0}^{2}}$$

• Coverage Probability:

$$P_{c} = \operatorname{Prob}\left(\operatorname{SINR} > \eta\right) = \operatorname{Prob}\left(\sum_{i=0}^{n} P_{i} + \sum_{j=0}^{m} P_{j}^{(d)} < \gamma\right)$$
$$= \operatorname{Prob}\left(\operatorname{10}\log_{10}\left(P_{I}\right) < \operatorname{10}\log_{10}\gamma\right)$$
$$\approx \operatorname{Prob}\left(\max_{i,j}\left(P_{i}\left(\operatorname{dBm}\right), P_{j}^{(d)}\left(\operatorname{dBm}\right)\right) < \operatorname{10}\log_{10}\gamma\right),$$

Prabhasa K (IISc)

3

(日) (同) (三) (三)

ł

• Coverage Probability averaged over n, m:

$$P_{c_0} = \mathbb{E}[P_{c_0}|_{n,m}] \\ = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{c_0}|_{n,m} \frac{(\rho_{\text{BS}} \pi R_0^2)^n}{n!} \frac{(\rho_{\text{D}} \pi R_0^2)^m}{m!} \\ \times \exp(-(\rho_{\text{BS}} + \rho_{\text{D}})\pi R_0^2)$$

$$= \exp\left(-\rho_{\mathsf{D}}\pi R_0^2(1-F_{\mathsf{D}}(\gamma)) - \rho_{\mathsf{BS}}\pi R_0^2(1-F_{\mathsf{I}}(\gamma))\right),$$

• Coverage Probability averaged over n, m:

$$P_{c_0} = \mathbb{E}[P_{c_0}|_{n,m}] \\ = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{c_0}|_{n,m} \frac{(\rho_{\text{BS}} \pi R_0^2)^n}{n!} \frac{(\rho_{\text{D}} \pi R_0^2)^m}{m!} \\ \times \exp\left(-(\rho_{\text{BS}} + \rho_{\text{D}})\pi R_0^2\right)$$

$$= \exp\left(-\rho_{\mathsf{D}}\pi R_0^2(1-F_{\mathsf{D}}(\gamma)) - \rho_{\mathsf{BS}}\pi R_0^2(1-F_{\mathsf{I}}(\gamma))\right),$$

• Coverage Probability over the entire area:

$$P_{c} = \lim_{R_{0} \to \infty} P_{c_{0}} = \exp\left(-\lambda_{\mathsf{BS}}(\gamma) - \lambda_{\mathsf{D}}(\gamma)\right).$$

- Presented a new analytical framework for analyzing the coverage probability in coexisting cellular and D2D networks.
- Characterizing channel gain statistics of serving, non-serving BSs, and D2D links.
- The reciprocal impact of D2D and cellular communications on the downlink coverage is investigated as a function of the D2D links maximum range and density.

• **Goal:** Solve the quantized PR problem (inherently - CE and MUD) for a NL-MIMO scheme.

- **Goal:** Solve the quantized PR problem (inherently CE and MUD) for a NL-MIMO scheme.
- Approach:

- **Goal:** Solve the quantized PR problem (inherently CE and MUD) for a NL-MIMO scheme.
- Approach:
 - (MO-)MIMO UEs adopt QAM modulations, and the BS chains exploit envelop detectors and low-resolution ADCs to obtain quantized magnitude observations (RF chain structure different from IQ)

- **Goal:** Solve the quantized PR problem (inherently CE and MUD) for a NL-MIMO scheme.
- Approach:
 - (MO-)MIMO UEs adopt QAM modulations, and the BS chains exploit envelop detectors and low-resolution ADCs to obtain quantized magnitude observations (RF chain structure different from IQ)
 - In the uplink TX, MO-MIMO must complete CE and MUD based on the quantized magnitude measurements at the BS

• **Goal:** Solve the quantized PR problem (inherently - CE and MUD) for a NL-MIMO scheme.

• Approach:

- (MO-)MIMO UEs adopt QAM modulations, and the BS chains exploit envelop detectors and low-resolution ADCs to obtain quantized magnitude observations (RF chain structure different from IQ)
- In the uplink TX, MO-MIMO must complete CE and MUD based on the quantized magnitude measurements at the BS
- Developed CE and MUDs tested for various noise conditions, ADC resolutions, lengths of channel training sequences, and numbers of BS antennas

• Propose a low-power and low-cost NL-MIMO scheme (MO-MIMO).

- Propose a low-power and low-cost NL-MIMO scheme (MO-MIMO).
- Practical CEs and MUDs were developed for MO-MIMO by categorizing the two problems as a quantized phase retrieval (PR) problem.

- Propose a low-power and low-cost NL-MIMO scheme (MO-MIMO).
- Practical CEs and MUDs were developed for MO-MIMO by categorizing the two problems as a quantized phase retrieval (PR) problem.
- Solved the PR problem by constructing two algorithms under the framework of generalized approximate message passing (GAMP).

Other Interesting Papers

- Mobility-Aware Caching in D2D Networks.
- Full-Duplex Massive MIMO Relaying Systems With Low-Resolution ADCs.
- Distributionally Robust Collaborative Beamforming in D2D Relay Networks With Interference Constraints.
- On the Performance of Beam Division Nonorthogonal Multiple Access for FDD-Based Large-Scale Multi-User MIMO Systems.
- Feedback Mechanisms for FDD Massive MIMO With D2D-Based Limited CSI Sharing.
- Secret Key Generation Based on Estimated Channel State Information for TDD-OFDM Systems Over Fading Channels
- Millimeter-Wave Channel Estimation Based on 2-D Beamspace MUSIC Method

Prabhasa K (IISc)