QC² LinQ: QoS and Channel-Aware Distributed Link Scheduler for D2D Communication

Hyun-Suk Lee and Jang-Won Lee

January 21, 2017

Problem:

- Distributed link scheduling problem for Device-to-Device (D2D) Communication
 - Quality-of-service (QoS) (minimum average data rate) requirements
 - Time-varying channel conditions

Contributions:

- Two distributed resource allocation algorithms
 - QC LinQ:
 - QoS and channel aware priority assignment, SIR-threshold based yielding criterion
 - QC² LinQ:
 - Qos and channel aware priority assignment and yielding criterion
- Energy-level-based signaling procedure

System Model

FIGURE - D2D communication model

Notation:

- $\blacksquare \ \mathcal{K} \in \{1, \dots, \textbf{K}\} \rightarrow \text{Set of D2D links}$
- $\blacksquare \ \mathcal{U}^{\mathcal{T}} \in \{u_k^{\mathcal{T}}, k \in \mathcal{K}\} \rightarrow \text{Set of TXs}$
- $\blacksquare \ \mathcal{U}^{\mathcal{R}} \in \{u^{\mathcal{R}}_k, k \in \mathcal{K}\} \rightarrow \text{Set of RXs}$
- $S \in \{1, 2, ..., S\}$ → Set of channel states
- $\pi_s \rightarrow$ Probability of system state s

Assumption:

- Channel state of each link ↓ Stationary stochastic process
- Each link operates at fixed power P

Scheduled Links and Achievable Date Rate

FIGURE - D2D communication model

Scheduling vector:

$$q_{s} = \left\{ \begin{array}{cc} q_{z}^{s} \in \{0, 1\}, & \forall z \in \mathcal{Z} \\ \sum_{z \in \mathcal{Z}} q_{z}^{s} \leq 1 \end{array} \right\} \forall s \in \mathcal{S}$$

Achievable data rate:

$$r_k^s(q_s) = \sum_{z \in \mathcal{Z}_k} q_z^s \log_2(1 + \frac{h_{k,k}^s P}{\sum\limits_{k' \in z, k' \neq k} h_{k,k'}^s P + N_0})$$

Scheduling group and indicator:

Average data rate:

$$\sum_{s\in\mathcal{S}}\pi_s r_k^s(q_s)$$

Scheduling group: $z \subset \mathcal{K}$

$$q_z^s = \begin{cases} 1, & \text{if the link in scheduling group z are} \\ & \text{scheduled in a time slot with state s} \\ 0, & \text{otherwise} \end{cases}$$

$$\sum_{k \in \mathcal{K}} \sum_{s \in \mathcal{S}} \pi_s r_k^s(q_s)$$

Centralized Optimal Link Scheduling

Optimization Problem:

$$\begin{array}{ll} \max_{q} & \sum_{k \in \mathcal{K}} \sum_{s \in \mathcal{S}} \pi_{s} r_{k}^{s}(q_{s}) \\ s.t. & \mathcal{C}_{1}: & \sum_{s \in \mathcal{S}} \pi_{s} r_{k}^{s}(q_{s}) \geq \zeta_{k}, \quad \forall k \in \mathcal{K} \\ & \mathcal{C}_{2}: & q_{s} \in \mathcal{Q}_{s}, \forall s \in \mathcal{S} \end{array}$$

Solution:

Lagrangian Dual Problem:

$$\begin{split} \max_{q} & \sum_{k \in \mathcal{K}} \sum_{s \in S} \pi_{s} r_{k}^{s}(q_{s}) + \sum_{k} \lambda_{k} [\sum_{s \in S} \pi_{s} r_{k}^{s}(q_{s}) - \zeta_{k}] \\ \max_{q} & \sum_{k \in \mathcal{K}} \sum_{s \in S} (1 + \lambda_{k}) \pi_{s} r_{k}^{s} \\ q_{z}^{s} = \begin{cases} 1, & \text{if } z = \arg \max_{z' \in \mathcal{Z}} \Psi_{z'}^{s} & \forall z \in \mathcal{Z} \\ 0, & \text{otherwise} \end{cases} \\ \Psi_{z}^{s} = \sum_{k \in z} \sum_{s \in S} (1 + \lambda_{k}) \pi_{s} \log_{2}(1 + \frac{h_{k,k}^{s} P}{\sum_{k' \in z, k' \neq k} h_{k',k}^{s} P + N_{0}}) \end{split}$$
(1)

5/13

Update Lagrange Multiplier:

$$\lambda_k^{(t+1)} = \max\{0, \lambda_k^{(t)} - a^{(t)} v_k^{(t)}\}$$

where,

$$a^{(t)} = stepsize$$
 $v_k^{(t)} = r_k^s - \zeta_k, \quad \forall k \in \mathcal{K}$

Good News

Global optimal solution

Bad News

- Computational complexity 2^K
- Large signaling overhead

Developing Distributed Link Scheduling

Requirements:

- Small signaling overhead
- Low computational complexity
- Approximates optimal solution

Developing distributed algorithm:

Step 1: Each link updates its weight parameter in each time slot as in (1) and (2).

$$\lambda_k^{(t+1)} = \max\{0, \lambda_k^{(t)} - a^{(t)} v_k^{(t)}\}$$

$$v_k^{(t)} = r_k^s - \zeta_k, \forall k \in \mathcal{K}$$
(2)

Step 2: The links in the scheduling group which has the largest sum of weighted achievable rates are scheduled as in (3)

$$q_{z}^{s} = \begin{cases} 1, & \text{if } z = \arg \max_{z' \in \mathcal{Z}} \Psi_{z'}^{s} \quad \forall z \in \mathcal{Z} \\ 0, & \text{otherwise} \end{cases}$$

$$\Psi_{z}^{s} = \sum_{k \in \mathcal{Z}} (1 + \lambda_{k}) \log_{2}(1 + \frac{h_{k,k}^{s} P}{\sum_{k' \in z, k' \neq k} h_{k',k}^{s} P + N_{0}})$$

$$(3)$$

QC² LinQ

QoS and channel aware priority assignment:

Weighted achievable data rates:

$$\rho_{k}^{(t)} = (1 + \lambda_{k}) \log_{2}(1 + \frac{h_{k,k}^{s} P}{\sum_{k' \in z, k' \neq k} h_{k',k}^{s} P + N_{0}}), \quad \forall k \in \mathcal{K}$$
(4)

Approximated weighted achievable data rates:

$$\rho_k^{(t)} = (1 + \lambda_k) \log_2(1 + \frac{h_{k,k}^s P}{I + N_0}), \quad \forall k \in \mathcal{K}$$
(5)

All links share their approximated weighted achievable data rate with each other

- \blacksquare Maintain a priority list \rightarrow descending order of the approximated weighted achievable rates
- decide which link to schedule based on the priority list and yielding criterion

QCLinQ

 QCLinQ uses Qos and channel aware priority assignment and SIR based threshold technique

Signaling procedure:

FIGURE - Simple example with two links

FIGURE - Structure of a time slot in QCLinQ

Signaling procedure

First TX-RX block:

(a) The first TX-block with two links.

First TX-block and RX-block with two links.

(b) The first RX-block with two links.

At RXs

- Channel gain of its own link
- Weighted achievable rates

At TXs

Its own weighted achievable data rate

What about weighted achievable rate of other links?

Signaling procedure Contd.,

Second TX-BX block:

(b) The second RX-block with two links.

At RXs

- Weighted achievable rate of all links
- Schedule priorities of all links
- T_i is allowed to transmit only if

$$\frac{Ph_{T_i,R_i}}{\sum_{j\in\mathcal{L}_i}Ph_{T_j,R_i}} > \gamma_{RX}$$

At TXs

- Weighted achievable rate of all links
- Schedule priorities of all links
- T_i is allowed to transmit only if

$$\frac{Ph_{T_j,R_i}}{Ph_{T_i,R_j}} > \gamma_{TX}, \forall j \in \mathcal{L}'_i$$

QC² LinQ

QC²LinQ uses Qos and channel aware priority assignment and yielding criterion

QoS and channel aware yielding criterion:

- The decrement of the sum of the weighted achievable data rates of the higher priority links due to its transmission
- Its own weighted achievable data rate

Approximated weighted achievable rate with the additional interference

$$\rho_{j}^{(t)} = (1 + \lambda_{j}) \log_{2}(1 + \frac{h_{j,j}^{s} P}{I + h_{k,j}^{s} P + N_{0}}), \quad \forall k \in \mathcal{K}$$
(6)

The decrement of the weighted achievable rate is

$$\begin{split} \rho_{j}^{(t)} &= (1+\lambda_{j})\log_{2}(1+\frac{h_{j,j}^{s}P}{I+N_{0}}) - (1+\lambda_{j})\log_{2}(1+\frac{h_{j,j}^{s}P}{I+h_{k,j}^{s}P+N_{0}})\\ \rho_{j}^{(t)} &= (1+\lambda_{j})\log_{2}(1+\frac{h_{k,j}^{s}P}{I+N_{0}}) \end{split}$$

TX yielding criterion:

$$(1 + \lambda_k) \log_2(1 + \frac{h_{k,k}^s P}{I + N_0}) \ge \sum_{j \in \mathcal{L}_k} (1 + \lambda_j) \log_2(1 + \frac{h_{k,j}^s P}{I + N_0})$$
(7)

January 21, 2017 12 / 13

QC² LinQ

Signaling procedure:

1st TX block	lst 2nd RX TX block block	2nd 3rd RX RX block block	Rate scheduling block	Data segment block	Ack block
--------------------	---------------------------------	---------------------------------	-----------------------------	-----------------------	--------------

FIGURE - Structure of time slot in QC²LinQ

COMPARISON OF SIGNALING IN PROPOSED ALGORITHMS

	1st TX-block	1st RX-block	2nd TX-block	2nd RX-block	3rd RX-block
Transmission power in QCLinQ	Р	$\frac{K^1 \rho_i}{Ph_{T_i R_i}}$	$K^2 P \rho_i$	$\frac{K^1}{Ph_{T_iR_i}}$	-
Transmission power in QC ² LinQ	P	$K^2 P w_i$	$K^2 P \rho_i$	Р	$K^2 P \rho_i$
Information sharing in QCLinQ	-	-	RXs obtain ρ_i 's	TXs obtain ρ_i 's	-
Information sharing in QC ² LinQ	-	-	RXs obtain ρ_i 's	TXs obtain w_i 's	TXs obtain ρ_i 's

Overhead comparison:

- Centralized scheduler O(K²)
- QCLinQ scheduler O(4K)
- QC²LinQ scheduler O(5K)

