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Problem setup
I Network of L sensor nodes

I Single/Multi hop communication links between
nodes

I Measurement model at j th node:
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I x1,x2 . . . xL are jointly
sparse

I Goal:
I Decentralized estimation of x1, x2 . . . xL

I Exploit joint sparsity to reduce no. of local measurements

I Nodes can exchange only binary vectors



Motivation: why binary messaging?

I Radar sensor fusion for 3D scene reconstruction:
I # sensors (L) = 4
I # (range, doppler, angle) hypothesis (N) = 1024 x 32 x 8 = 262144
I # msg exchanged in each iteration = 12 (fully connected network)
I # bytes exchanged per iteration = 12 x (262144 x 8) = 24 MB
I # bytes exchanged per iteration (binary messaging) = 384 KB

I For 802.11g wlan link, typical throughput is 20 Mbps
I Comm. time per iteration (conventional messaging) = 9.6 seconds
I Comm. time per iteration (binary messaging) = 0.15 seconds

I Advantages of binary messaging in decentralized algorithms
I Reduced communication bandwidth requirements
I Enhanced network lifetime



Past work on joint sparse signal recovery

I Centralized algorithms
I M-FOCUSS (2005)
I Distributed Compressed Sensing and SOMP (2005)
I M-SBL (2007)

I Decentralized algorithms
I Turbo BCS (2010)
I MMV-ADM (2011)
I Decentralized Support detection of MMV with joint Sparsity (Q. Ling and Z.

Tian, 2011)
I Decentralized Bayesian Matching Pursuit (2011)
I Decentralized Reweighted `1/2 (2013)
I DCS-AMP (2013)
I CB-DSBL (2014)

I Decentralized algorithms with binary messaging
I Decentralized Subspace Pursuit (2014)
I Distributed ADMM with 1 bit messaging (GlobalSIP, 2014)



Our work

I A new algorithm called qCB-DSBL is proposed for decentralized joint sparse
signal recovery which uses binary messaging between nodes

I qCB-DSBL stands for Quantized Consensus Based Distributed Sparse
Bayesian Learning



Quick recap of SBL

I SBL stands for Sparse Bayesian Learning [Wipf and Rao, 2004]

I Problem: Recover unknown sparse vector x from its noisy, underdetermined,
linear measurements y

y = Φx + w

I Impose a sparsity inducing signal prior, x ∼ N (0,Γ)
I Γ = diag(γ1,γ2, . . .γL) model the variance of entries of x
I If Γ is known, from LMMSE theory, x̂MAP ∼ N (µ,Σ)

Σ = Γ− ΓΦTσ2Im +ΦΓΦT−1ΦΓ

µ = σ−2ΣΦT y

I ML estimate γML = arg max
γ∈Rn

+

log p(y|γ) obtained via EM algorithm

E step: Q(γ|γk ) = Ex|y,γk [log p(y, x|γ)]

M step: γk+1 = arg max
γ

Q(γ|γk )



Quick recap of CB-DSBL

I CB-DSBL stands for consensus based Consensus based Distributed Sparse
Bayesian Learning

I MAP estimation of local sparse vectors x1, x2 . . . xL

I A common parameterized Gaussian signal prior N (0,Γ) is assumed by all
nodes to induce joint sparsity

I The ML estimate of prior parameters Γ = diag(γ1,γ2 . . .γn) is obtained using
EM algorithm

I The M step of EM algorithm is decentralized by using ADMM

I Upon convergence, the nodes arrive at consensus with respect to prior
parameters Γ resulting in a joint sparse solution



Extending CB-DSBL to use binary messaging

I Approach-1 Adapt ADMM updates to account for quantized (1 bit) messages

I Approach-2 qCB-DSBL

1. Each node runs SBL iteration to update γ

2. Each node broadcasts its current estimate of binary support to its ngbd
3. Each node fuses the binary supports received from its neighboring nodes

to generate extrinsic information
4. Use extrinsic information to update γ

5. Repeat steps 1 to 4, until convergence



3 questions

1. How to generate local binary support?

2. How to combine binary supports from multiple nodes?

3. How to use extrinsic information to update γ locally at each node?



Q1: How to generate local binary support?

I Assume PFA = Probability of false alarm for zero support detection
I PFA is applicable on per index basis
I Same PFA is applicable to all nodes in the network

I At j th node, for index i , (1 ≤ i ≤ n), we define following two hypothesis

H0 : xj (i) = 0

H1 : xj (i) 6= 0

or equivalently,
H0 : γj (i) = 0

H1 : γj (i) > 0

where γj denotes the local variance parameters



Q1: How to generate local binary support?

I A log likelihood ratio test (LLRT) is setup as:

Decide H1 if

log
p(yj ;H1)

p(yj ;H0)
≥ θj,i

or equivalently,
(φT

j,i (σ
2
j Im +Φj Γ̃jΦ

T
j )
−1yj )
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∑
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γj (k)φj,kφ
T
j,k

I Under H0, T (yj ) is standard chi-squared distributed (DOF = 1)

T (yj ) =
(φT

j,i (σ
2
j Im +Φj Γ̃jΦ

T
j )
−1yj )
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I Denominator in T (yj ) is a normalization factor
I Note that T (yj ) does not depend on γj (i)



Q1: How to generate local binary support?

I Local binary support generated by performing LLRT for all indices i = 1 to n:

Decide H1 if
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Q2: Combining binary supports from multiple
nodes?

I Motivation from cognitive radio literature, how to fuse hard information from
multiple sensors

I Goal: Build an optimal (support) detector which fuses hard decisions from
multiple sensor(nodes) in a local ngbd

I Possible candidates:
1. AND rule detector
2. OR rule detector
3. K out of N rule detector

I We adopt “K out of N rule” variant i.e., the majority rule



Q2: Combining binary supports from multiple
nodes?

I Let (Z ) denote the “K out of L rule” detector, such that

Z =


0 if

L
2

or more sensor outputs are 0

1 if
L
2

or more sensor outputs are 1

I Under H0, sensor outputs are assumed to be Bernoulli(1− PFA,PFA)

I Then, PZ
FA = p(Z = 1|H0) is given by

L∑
l= L

2

(PFA)
l (1− PFA)

L−l



Q3: Local γ update using extrinsic information

I Shrink γj (i) if external binary vector suggests a 0 at i th index

I Question: Shrink γj (i) by how much amount?

I Answer: By shrinking γj (i), we are pursuing a 0 at i th location more aggresively,
which will result in reduction of the probability of false alarm for H0 event.

So the question is: how much can the local false alarm rate be reduced given the
extrinsic support.

I We shrink γ(i) (or tighten PFA) such that the resulting PFA equals that of an OR
rule detector which fuses the local binary vector and external binary vector



Q3: Local γ update using extrinsic information

I Reduced PFA =
PFA of OR rule detector (ZZ) which fuses local and external binary vectors

PZZ
FA = p(ZZ = 1|H0)

= p(Z = 1, local decision = 1 for index i|H0)

= p(Z = 1|H0)p(local decision = 1 for index i|H0)

= PZ
FAPFA

I Note that PZZ
FA is tighter than local PFA

I Backpropagating the PZZ
FA to obtain new threshold θnew

j,i

θnew
j,i = [Q−1(

PZZ
FA
2

)]2



Q3: Local γ update using extrinsic information
I So, for node j and i th index, we have

θold
j,i = [Q−1(

PFA

2
)]2
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2

)]2

I Define η , (
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I Then, we can write
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to get the update rule
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MSE performance
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Support aware LMMSE

Standalone SBL

Centralized MSBL

qCB−DSBL

I Sim Params: n = 50, m = 15, 10% sparsity, L = 10 nodes, no. of trials = 128,

PFA = 10−8



Support recovery performance
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Support aware LMMSE

Standalone SBL
Centralized MSBL

qCBDSBL

I Sim Params: n = 50, 10% sparsity, L = 10 nodes, SNR = 20 dB, no. of trials =

128, PFA = 10−8



Future work

I How to chose the optimal PFA ?

I Which fusion rule is optimal for generation of extrinsic support ?

I Compare performance with ”DCSP“ and ”DADMM with 1 bit messaging“

I Check performance with more Gaussian sources, unknown noise variance

I Guarantees for convergence/consensus of binary support

I Should we amplify γj (i), if extrinsic information says 1 at i th location

I Derive PFA and PD for SBL support detector



A forced analogy !


