Decentralized joint sparse signal recovery using binary messaging between nodes

Saurabh Khanna, Signal Processing for Communication, ECE, IISc

(日) (日) (日) (日) (日) (日) (日)

Contents

- Problem setup
- Proposed algorithm
- Simulation results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Future work

Problem setup

- Network of L sensor nodes
- Single/Multi hop communication links between nodes
- Measurement model at jth node:

Goal:

- Decentralized estimation of x₁, x₂...x_L
- Exploit joint sparsity to reduce no. of local measurements
- Nodes can exchange only binary vectors

Motivation: why binary messaging?

Radar sensor fusion for 3D scene reconstruction:

- # sensors (L) = 4
- # (range, doppler, angle) hypothesis (N) = 1024 x 32 x 8 = 262144
- # msg exchanged in each iteration = 12 (fully connected network)
- # bytes exchanged per iteration = 12 x (262144 x 8) = 24 MB
- # bytes exchanged per iteration (binary messaging) = 384 KB
- For 802.11g wlan link, typical throughput is 20 Mbps
 - Comm. time per iteration (conventional messaging) = 9.6 seconds

A D F A 同 F A E F A E F A Q A

- Comm. time per iteration (binary messaging) = 0.15 seconds
- Advantages of binary messaging in decentralized algorithms
 - Reduced communication bandwidth requirements
 - Enhanced network lifetime

Past work on joint sparse signal recovery

- Centralized algorithms
 - M-FOCUSS (2005)
 - Distributed Compressed Sensing and SOMP (2005)
 - M-SBL (2007)
- Decentralized algorithms
 - Turbo BCS (2010)
 - MMV-ADM (2011)
 - Decentralized Support detection of MMV with joint Sparsity (Q. Ling and Z. Tian, 2011)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Decentralized Bayesian Matching Pursuit (2011)
- Decentralized Reweighted l_{1/2} (2013)
- DCS-AMP (2013)
- CB-DSBL (2014)
- Decentralized algorithms with binary messaging
 - Decentralized Subspace Pursuit (2014)
 - Distributed ADMM with 1 bit messaging (GlobalSIP, 2014)

Our work

A new algorithm called qCB-DSBL is proposed for decentralized joint sparse signal recovery which uses binary messaging between nodes

(日)

 qCB-DSBL stands for Quantized Consensus Based Distributed Sparse Bayesian Learning

Quick recap of SBL

- SBL stands for Sparse Bayesian Learning [Wipf and Rao, 2004]
- Problem: Recover unknown sparse vector x from its noisy, underdetermined, linear measurements y

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{w}$$

- Impose a sparsity inducing signal prior, $\mathbf{x} \sim \mathcal{N}(0, \Gamma)$
- $\Gamma = \text{diag}(\gamma_1, \gamma_2, \dots, \gamma_L)$ model the variance of entries of **x**
- If Γ is known, from LMMSE theory, $\hat{\mathbf{x}}_{\mathsf{MAP}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$\begin{split} \boldsymbol{\Sigma} &= \boldsymbol{\Gamma} - \boldsymbol{\Gamma} \boldsymbol{\Phi}^T \boldsymbol{\sigma}^2 \mathbf{I}_m + \boldsymbol{\Phi} \boldsymbol{\Gamma} \boldsymbol{\Phi}^{T-1} \boldsymbol{\Phi} \boldsymbol{\Gamma} \\ \boldsymbol{\mu} &= \boldsymbol{\sigma}^{-2} \boldsymbol{\Sigma} \boldsymbol{\Phi}^T \mathbf{y} \end{split}$$

 $\blacktriangleright \ \ \mathsf{ML} \ \ \mathsf{estimate} \ \ \gamma_{\mathsf{ML}} = \underset{\boldsymbol{\gamma} \in \mathbb{R}^n_+}{\arg \max} \ \ \mathsf{log} \ p(\boldsymbol{y}|\boldsymbol{\gamma}) \ \ \mathsf{obtained} \ \mathsf{via} \ \ \mathsf{EM} \ \mathsf{algorithm}$

$$\begin{array}{ll} \mathsf{E} \mbox{ step: } & Q(\gamma|\gamma^k) = \mathbb{E}_{\mathbf{x}|\mathbf{y},\gamma^k}[\log p(\mathbf{y},\mathbf{x}|\gamma)] \\ \mathsf{M} \mbox{ step: } & \gamma^{k+1} = \arg \max_{\gamma} Q(\gamma|\gamma^k) \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Quick recap of CB-DSBL

- CB-DSBL stands for consensus based Consensus based Distributed Sparse Bayesian Learning
- MAP estimation of local sparse vectors x₁, x₂...x_L
- A common parameterized Gaussian signal prior N(0, Γ) is assumed by all nodes to induce joint sparsity
- The ML estimate of prior parameters $\Gamma = \text{diag}(\gamma_1, \gamma_2 \dots \gamma_n)$ is obtained using EM algorithm
- The M step of EM algorithm is decentralized by using ADMM
- Upon convergence, the nodes arrive at consensus with respect to prior parameters Γ resulting in a joint sparse solution

Extending CB-DSBL to use binary messaging

Approach-1 Adapt ADMM updates to account for quantized (1 bit) messages

Approach-2 qCB-DSBL

- 1. Each node runs SBL iteration to update γ
- 2. Each node broadcasts its current estimate of binary support to its ngbd
- 3. Each node fuses the binary supports received from its neighboring nodes to generate extrinsic information

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4. Use extrinsic information to update γ
- 5. Repeat steps 1 to 4, until convergence

3 questions

- 1. How to generate local binary support?
- 2. How to combine binary supports from multiple nodes?
- 3. How to use extrinsic information to update γ locally at each node?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Q1: How to generate local binary support?

Assume P_{FA} = Probability of false alarm for zero support detection

- P_{FA} is applicable on per index basis
- Same P_{FA} is applicable to all nodes in the network
- ▶ At *j*th node, for index *i*, $(1 \le i \le n)$, we define following two hypothesis

 $\mathcal{H}_0: \mathbf{x}_j(i) = 0$ $\mathcal{H}_1: \mathbf{x}_j(i) \neq 0$

or equivalently,

$$\mathcal{H}_0: \gamma_j(i) = 0$$
$$\mathcal{H}_1: \gamma_j(i) > 0$$

(日) (日) (日) (日) (日) (日) (日)

where γ_i denotes the local variance parameters

Q1: How to generate local binary support?

A log likelihood ratio test (LLRT) is setup as:

Decide \mathcal{H}_1 if

$$\log \frac{p(\mathbf{y}_{j}; \mathcal{H}_{1})}{p(\mathbf{y}_{j}; \mathcal{H}_{0})} \geq \theta_{j,i}$$

or equivalently,

$$(\phi_{j,i}^{\mathsf{T}}(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\mathbf{\Gamma}}_{j}\Phi_{j}^{\mathsf{T}})^{-1}\mathbf{y}_{j})^{2}\geq\theta_{j,i}$$

where $ilde{\mathbf{\Gamma}}_{j} = \sum_{k
eq i} oldsymbol{\gamma}_{j}(k) \phi_{j,k} \phi_{j,k}^{\mathsf{T}}$

Under H₀, T(y_i) is standard chi-squared distributed (DOF = 1)

$$T(\mathbf{y}_j) = \frac{(\phi_{j,i}^T (\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\mathbf{\Gamma}}_j \Phi_j^T)^{-1} \mathbf{y}_j)^2}{\phi_{j,i}^T (\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\mathbf{\Gamma}}_j \Phi_j^T)^{-1} \phi_{j,i}}$$

- Denominator in T(y_j) is a normalization factor
- Note that T(y_i) does not depend on γ_i(i)

Q1: How to generate local binary support?

Local binary support generated by performing LLRT for all indices i = 1 to n:

Decide \mathcal{H}_1 if

$$T(\mathbf{y}_{j}) = \frac{(\phi_{j,i}^{\mathsf{T}}(\sigma_{j}^{2}\mathbf{I}_{\mathsf{M}} + \Phi_{j}\tilde{\mathbf{\Gamma}}_{j}\Phi_{j}^{\mathsf{T}})^{-1}\mathbf{y}_{j})^{2}}{\phi_{j,i}^{\mathsf{T}}(\sigma_{j}^{2}\mathbf{I}_{\mathsf{M}} + \Phi_{j}\tilde{\mathbf{\Gamma}}_{j}\Phi_{j}^{\mathsf{T}})^{-1}\phi_{j,i}} \ge \theta_{j,i} = [\mathcal{Q}^{-1}(\frac{P_{\mathsf{FA}}}{2})]^{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Q2: Combining binary supports from multiple nodes?

- Motivation from cognitive radio literature, how to fuse hard information from multiple sensors
- Goal: Build an optimal (support) detector which fuses hard decisions from multiple sensor(nodes) in a local ngbd

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Possible candidates:
 - 1. AND rule detector
 - 2. OR rule detector
 - 3. K out of N rule detector
- We adopt "K out of N rule" variant i.e., the majority rule

Q2: Combining binary supports from multiple nodes?

Let (Z) denote the "K out of L rule" detector, such that

$$Z = \begin{cases} 0 & \text{if } \frac{L}{2} \text{ or more sensor outputs are 0} \\ 1 & \text{if } \frac{L}{2} \text{ or more sensor outputs are 1} \end{cases}$$

► Under H₀, sensor outputs are assumed to be Bernoulli(1 - P_{FA}, P_{FA})

• Then,
$$P_{FA}^Z = p(Z = 1 | \mathcal{H}_0)$$
 is given by

$$\sum_{l=\frac{L}{2}}^{L} (P_{FA})^{l} (1 - P_{FA})^{L-l}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Q3: Local γ update using extrinsic information

Shrink $\gamma_i(i)$ if external binary vector suggests a 0 at *i*th index

- Question: Shrink $\gamma_i(i)$ by how much amount?
- Answer: By shrinking $\gamma_j(i)$, we are pursuing a 0 at *i*th location more aggresively, which will result in reduction of the probability of false alarm for \mathcal{H}_0 event.

So the question is: how much can the local false alarm rate be reduced given the extrinsic support.

A D F A 同 F A E F A E F A Q A

• We shrink $\gamma(i)$ (or tighten P_{FA}) such that the resulting P_{FA} equals that of an OR rule detector which fuses the local binary vector and external binary vector

Q3: Local γ update using extrinsic information

Reduced P_{FA} =

PFA of OR rule detector (ZZ) which fuses local and external binary vectors

$$P_{FA}^{ZZ} = p(ZZ = 1|\mathcal{H}_0)$$

= $p(Z = 1, \text{local decision} = 1 \text{ for index } i|\mathcal{H}_0)$
= $p(Z = 1|\mathcal{H}_0)p(\text{local decision} = 1 \text{ for index } i|\mathcal{H}_0)$
= $P_{FA}^{ZP}P_{FA}$

Backpropagating the P^{ZZ}_{FA} to obtain new threshold θ^{new}_{j,i}

$$\theta_{j,i}^{\mathsf{new}} = [\mathcal{Q}^{-1}(\frac{P_{FA}^{ZZ}}{2})]^2$$

Q3: Local γ update using extrinsic information

So, for node *j* and *i*th index, we have

$$\begin{split} \theta_{j,i}^{\text{old}} &= [\mathcal{Q}^{-1}(\frac{P_{FA}}{2})]^2\\ \theta_{j,i}^{\text{new}} &= [\mathcal{Q}^{-1}(\frac{P_{FA}}{2})]^2 \end{split}$$

• Define
$$\eta \triangleq \left(\frac{Q^{-1}(0.5P_{FA}^{ZZ})}{Q^{-1}(0.5P_{FA})}\right)^2 = \frac{\theta_{j,i}^{\text{new}}}{\theta_{j,i}^{\text{old}}}$$

Then, we can write

$$\eta = \frac{\theta_{j,i}^{C}(\gamma_{j}^{\mathsf{old}}(k\neq i)) \cdot (\frac{1}{\gamma_{j}^{\mathsf{new}(i)}} + \phi_{j,i}^{T}(\sigma_{j}^{2}\mathbf{I}_{m} + \Phi_{j}\tilde{\mathbf{\Gamma}}_{j}^{\mathsf{old}}\Phi_{j}^{T})^{-1}\phi_{j,i})}{\theta_{j,i}^{C}(\gamma_{j}^{\mathsf{old}}(k\neq i)) \cdot (\frac{1}{\gamma_{j}^{\mathsf{old}}(i)} + \phi_{j,i}^{T}(\sigma_{j}^{2}\mathbf{I}_{m} + \Phi_{j}\tilde{\mathbf{\Gamma}}_{j}^{\mathsf{old}}\Phi_{j}^{T})^{-1}\phi_{j,i})}$$

to get the update rule

$$\begin{split} \gamma_{j}^{\text{new}}(i) &= \frac{\gamma_{j}^{\text{old}}(i)}{\eta + (\eta - 1)\gamma_{j}^{\text{old}}(i)(\phi_{j,i}^{T}(\sigma_{j}^{2}\mathbf{I}_{m} + \mathbf{\Phi}\tilde{\mathbf{\Gamma}}^{\text{old}}\mathbf{\Phi}^{T})^{-1}\phi_{j,i})} \\ \text{where } \tilde{\mathbf{\Gamma}}_{j} &= \sum_{k \neq i} \gamma_{j}(k)\phi_{j,k}\phi_{j,k}^{T} \end{split}$$

MSE performance

Sim Params: n = 50, m = 15, 10% sparsity, L = 10 nodes, no. of trials = 128, $P_{FA} = 10^{-8}$

Support recovery performance

Sim Params: n = 50, 10% sparsity, L = 10 nodes, SNR = 20 dB, no. of trials = $128, P_{FA} = 10^{-8}$

Future work

- How to chose the optimal P_{FA} ?
- Which fusion rule is optimal for generation of extrinsic support ?
- Compare performance with "DCSP" and "DADMM with 1 bit messaging"
- Check performance with more Gaussian sources, unknown noise variance

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Guarantees for convergence/consensus of binary support
- Should we amplify $\gamma_i(i)$, if extrinsic information says 1 at *i*th location
- Derive P_{FA} and P_D for SBL support detector

A forced analogy !

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで