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Introduction to Graphical models

Probabilistic graphical models are diagrammatic
representation of joint probability distributions.

Node: random variable. Links: probabilistic relationships
between these variables

Bayesian networks (directed graphical models) and
Markov random fields (Undirected graphical models).

Often convenient to convert both directed and undirected
graphs into a different representation called a factor graph.
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Compute the density P(XF /XE )

EVIDENCE

NODESNODES

QUERY

GRAPH XFXE

Figure: Inference
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Calculate conditional density of a single query node xF

given an arbitrary set of evidence nodes xE .

Computation involved: Marginalization over set of random
variables.

Marginalization takes advantage of the factorization.

Variable elimination algorithm gives a computationally
efficient method for calculating the marginals.

P(xF , xE ) =
∑

xR

P(xF , xE , xR) also P(xE ) =
∑

xF

P(xF , xE )

(1)
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Questions to be asked: Given any order of marginalization,
does the complexity change? Answer: YES!
Eg: Consider a chain:

P(x1, x2, x3) = P(x1)P(x2/x1)P(x3/x2) (2)

Elimination ordering I1 = [1, 2, 3] and I2 = [2, 3, 1]

X1 X2 X3

Figure: Chain Structure GM
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Algorithm

Initialize : G, Ordering I and initialize active list.

Evidence

Update : Place suitable mi(xSi
) on the active list.

Normalize
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Motivation

What if the problem involves computing mutliple conditional
densities?

What if the problem involves computing single node
marginals?

Is it computationally efficient to run VE multiple times?

Many intermediate factors are same for different
conditional densities: Possibility of re-use of factors.

Optimal order, do not address - simplify : Consider
TREES!!
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Figure: Message Passing
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How does MP work?

Compute messages:

mji(xi ) =
∑

xj



ΨE (xj)Ψ(xi , xj)
∏

k∈N (j)\i

mkj(xj)



 (3)

The marginal can be written as

P(xF /xE ) ∝ ΨE (xf )
∏

e∈N (f )

mef (xf ) (4)

Protocol: A node can send message to a neighboring node
only if it has received messages from all its neighbors (other
than the target node).
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Algorithm

Recursive implementation possible.

Collect - Distribute - Compute Marginal

COLLECT(i , j) DISTRIBUTE(i , j)
fork ∈ N (j)\i Send Mesage(j , i)

COLLECT(j , k) fork ∈ N (j)\i
Send Mesage(j , i) DISTRIBUTE(j , k)

Compute Marginal(i) : P(xi ) ∝ ΨE (xi)
∏

j∈N (i)

mji(xi )
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EM - explained using Message Passing in Factor
Graphs

ML estimation problem: P(y/s) =
∏

j P(yj/sk , k ∈ K(j)), Yj

depends on {sk : k ∈ K(j)}.

Hidden variables Xjk associated with each edge,
J (k) = {j : k ∈ K(j)}

An iterative algorithm is message passing on a graph if
computation at a given node at a given iteration use only
results of previous computation at that node and
information communicated from other connected nodes.
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Graph Learning problem

. . . .

. . . .

M

hLh2
h1
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Y1 YN−1 YN

VN−1 VN

Figure: BN of a SISO-OFDM system in Time Domain
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