Cramér Rao-Type Bounds for Sparse Bayesian Learning

Ranjitha P

February 11, 2012

Ranjitha P Cramér Rao-Type Bounds for Sparse Bayesian Learning

(日)

- Compressible Signal
 - Examples
- 3 Bayesian Lower Bounds
 - Contributions
 - Noise Variance known: Bounds from the Joint pdf
 - General Marginalized Bounds
 - Noise Variance unknown: Bounds from the Joint pdf

4 Simulation Results

- Lower Bounds on the MSE Performance of $\hat{\mathbf{x}}(\mathbf{y})$
- Lower Bounds on the MSE Performance of $\hat{\xi}(\mathbf{y})$

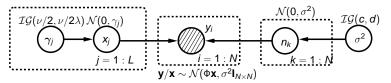
A (1) > A (2) > A

SMV-SBL

Linear Single Measurement Vector (SMV) SBL model

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{n},$$

 $\mathbf{y} \in \mathbb{R}^N$, the measurement matrix $\mathbf{\Phi} \in \mathbb{R}^{N \times L}$: known and N < L, $\mathbf{x} \in \mathbb{R}^L$: unknown compressible vector, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$, σ^2 may be known or unknown.



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Examples

- A vector **x** is *p*-compressible if $|x_i| \le Ri^{-1/p}$ for i = 1, ..., L
- Q: Is it possible to obtain such a compressible signal by drawing samples from a distribution?
- Answer: Yes, such priors are known as compressible priors.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Examples

- Laplace distribution is NOT compressible
- Generalized Compressible Prior: x

$$p_{\mathbf{X}}(\mathbf{x}) \propto \prod_{i=1}^{L} \left(1 + \frac{|\mathbf{x}_i|^{ au}}{
u}\right)^{-(
u+1)/ au},$$

where $x_i \in (-\infty,\infty), \ \tau, \nu > 0.$

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Examples

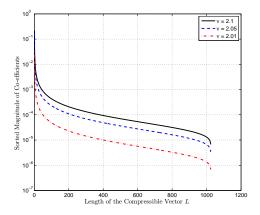


Figure: Decay profile of the sorted magnitudes of *i.i.d.* samples drawn from a Student-*t* distribution.

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

BCRB, HCRB and MCRB

The MSE matrix E^θ is defined as

$$\mathsf{E}^{oldsymbol{ heta}} riangleq \mathbb{E}_{\mathsf{Y},\Theta_r}\left[(oldsymbol{ heta} - \hat{oldsymbol{ heta}}(\mathsf{y}))(oldsymbol{ heta} - \hat{oldsymbol{ heta}}(\mathsf{y}))^{\mathcal{T}}
ight],$$

where Θ_r denotes the random parameters to be estimated (whose realization is given by θ_r).

 I^θ is expressed in terms of the individual blocks of submatrices, where the (*ij*)th block is given by

$$\mathbf{I}_{ij}^{\boldsymbol{\theta}} = -\mathbb{E}_{\mathbf{Y},\Theta_r}[\nabla_{\boldsymbol{\theta}_i} \nabla_{\boldsymbol{\theta}_j}^{\mathcal{T}} \log p_{\mathbf{Y},\Theta_r;\Theta_d}(\mathbf{y},\boldsymbol{\theta}_r;\boldsymbol{\theta}_d)].$$

A lower bound on the MSE matrix E^θ is given by the inverse of the FIM:

$$\mathbf{E}^{\boldsymbol{ heta}} \succeq \left(\mathbf{I}^{\boldsymbol{ heta}} \right)^{-1}$$

(日)

Contributions

Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

Known Noise Variance

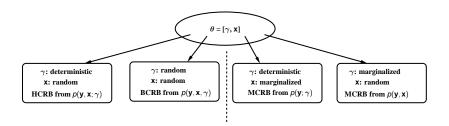


Figure: Summary of the lower bounds derived in this work when noise variance is assumed to be known.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Contributions

Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

Unknown Noise Variance

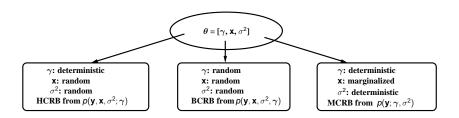


Figure: Different modeling assumptions and the corresponding bounds derived in this work when noise variance is assumed to be unknown.

< □ > < 同 > < 回 > < 回 > < 回 >

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

HCRB for $oldsymbol{ heta} = [\mathbf{x}, oldsymbol{\gamma}]$

Proposition

For the signal model in (3), the HCRB on the MSE matrix \mathbf{E}^{θ} of an unknown vector $\theta = [\mathbf{x}, \gamma]$, where the conditional distribution of the unknown compressible signal \mathbf{x}/γ is $\mathcal{N}(0, \Upsilon)$ and γ is modeled as an unknown deterministic parameter, is given by $\mathbf{E}^{\theta} \succeq (\mathbf{H}^{\theta})^{-1}$, where

$$\mathbf{H}^{\boldsymbol{\theta}} = \begin{bmatrix} \left(\frac{\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}}{\sigma^{2}} + \boldsymbol{\Upsilon}^{-1} \right) & \mathbf{0}_{L \times L} \\ \mathbf{0}_{L \times L} & \text{diag}(2\gamma_{1}^{2}, 2\gamma_{2}^{2}, \dots, 2\gamma_{L}^{2})^{-1} \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 > .

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

BCRB for $oldsymbol{ heta} = [\mathbf{x}, oldsymbol{\gamma}]$

Proposition

For the signal model in (3), the BCRB on the MSE matrix \mathbf{E}^{θ} of an unknown random vector $\theta = [\mathbf{x}, \gamma]$, where the conditional distribution of the unknown compressible signal \mathbf{x}/γ is $\mathcal{N}(0, \Upsilon)$, the hyperprior distribution on γ is $\prod_{i=1}^{L} \mathcal{IG}\left(\frac{\nu}{2}, \frac{\nu}{2\lambda}\right)$, is given by $\mathbf{E}^{\theta} \succeq (\mathbf{B}^{\theta})^{-1}$, where

$$\mathbf{B}^{\boldsymbol{\theta}} = \begin{bmatrix} \left(\frac{\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}}{\sigma^{2}} + \boldsymbol{\Upsilon}^{-1}\right) & \mathbf{0}_{L \times L} \\ \mathbf{0}_{L \times L} & \frac{\lambda^{2}(\nu+1)(\nu+7)}{2\nu}\mathbf{I}_{L \times L} \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 > .

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

MCRB for $heta = [\gamma]$

Theorem

For the signal model in (3), the log likelihood function log $p_{\mathbf{Y};\gamma}(\mathbf{y};\gamma)$ satisfies the regularity conditions. Further, the MCRB on the MSE matrix \mathbf{E}^{γ} of the unknown deterministic vector $\boldsymbol{\theta} = [\gamma]$ is given by $\mathbf{E}^{\gamma} \succeq (\mathbf{M}^{\gamma})^{-1}$, where the ijth element of \mathbf{M}^{γ} is given by

$$\mathbf{M}_{ij}^{\boldsymbol{\gamma}} = \frac{1}{2} (\Phi_j^T \boldsymbol{\Sigma}_y^{-1} \Phi_i)^2,$$

for $1 \le i, j \le L$, where Φ_i is the *i*th column of Φ , and $\Sigma_y = \sigma^2 \mathbf{I}_{N \times N} + \Phi \Upsilon \Phi^T$, as defined earlier.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

MCRB for $\theta = [\mathbf{x}]$

The Student-t prior,

$$p_{\mathbf{X}}(\mathbf{x}) = \left(\frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)}\right)^{L} \left(\frac{\lambda}{\pi\nu}\right)^{L/2} \prod_{i=1}^{L} \left(1 + \frac{\lambda x_{i}^{2}}{\nu}\right)^{-(\nu+1)/2},$$

where $x_i \in (-\infty, \infty)$, $\nu, \lambda > 0$, ν : number of degrees of freedom, λ : inverse variance.

Theorem

For the signal model in (3), the MCRB on the MSE matrix $\mathbf{E}^{\mathbf{x}}$ of the unknown compressible random vector $\boldsymbol{\theta} = [\mathbf{x}]$ distributed as (1), is given by $\mathbf{E}^{\mathbf{x}} \succeq (\mathbf{M}^{\mathbf{x}})^{-1}$, where

$$\mathbf{M}^{\mathbf{x}} \triangleq \frac{\mathbf{\Phi}^{T} \mathbf{\Phi}}{\sigma^{2}} + \frac{\lambda(\nu+1)}{(\nu+3)} \mathbf{I}_{L \times L}$$

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

GCP on x:

$$\boldsymbol{p}_{\mathbf{X}}(\mathbf{x}) = \left(\frac{\tau}{2} \left(\frac{\lambda}{\nu}\right)^{1/\tau} \frac{\Gamma((\nu+1)/\tau)}{\Gamma(1/\tau)\Gamma(\nu/\tau)}\right)^{L} \prod_{i=1}^{L} \left(1 + \frac{\lambda |\mathbf{x}_{i}|^{\tau}}{\nu}\right)^{-(\nu+1)/\tau}$$
(1)

Theorem

For the signal model in (3), the MCRB on the MSE matrix $\mathbf{E}_{\tau}^{\theta}$ of the unknown random vector $\theta = [\mathbf{x}]$, where \mathbf{x} is distributed by a GCP in (1) is given by $\mathbf{E}_{\tau}^{\theta} \succeq (\mathbf{M}_{\tau}^{\theta})^{-1}$, where

$$\mathbf{M}_{\tau}^{\boldsymbol{\theta}} = \frac{\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}}{\sigma^{2}} + \frac{\tau^{2}(\nu+1)}{(\nu+\tau+1)} \left(\frac{\lambda}{\nu}\right)^{2/\tau} \frac{\Gamma\left(\frac{\nu+2}{\tau}\right)\Gamma\left(2-\frac{1}{\tau}\right)}{\Gamma\left(\frac{1}{\tau}\right)\Gamma\left(\frac{\nu}{\tau}\right)} \mathbf{I}_{L\times L}, \quad (2)$$

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

Preliminaries

 In the Bayesian formulation, the unknown noise variance is associated with a prior, σ² ~ IG(c, d),

$$p_{\Xi}(\xi) = \frac{d^c}{\Gamma(c)} \xi^{(-c-1)} \exp\left\{-\frac{d}{\xi}\right\}; \quad \xi \in (0,\infty), \ c, d > 0.$$
(3)

• Under this assumption, one can marginalize the unknown noise variance and obtain the marginalized likelihood $p(\mathbf{y}/\mathbf{x})$ as,

$$p(\mathbf{y}/\mathbf{x}) = \frac{(2d)^c \Gamma(N/2+c)}{\Gamma(c)(\pi)^{N/2}} \left((\mathbf{y} - \mathbf{\Phi}\mathbf{x})^T (\mathbf{y} - \mathbf{\Phi}\mathbf{x}) + 2d \right)^{-\left(\frac{N}{2}+c\right)},$$
(4)

which is a multivariate Student-t distribution.

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

HCRB for
$$\theta = [\mathbf{x}, \mathbf{\gamma}, \xi]$$

Proposition

For the signal model in (3), the HCRB on the MSE matrix $\mathbf{E}_{\xi}^{\theta}$ of the unknown vector $\boldsymbol{\theta} = [\mathbf{x}, \boldsymbol{\gamma}, \boldsymbol{\xi}]$, with the conditional

distribution of the unknown compressible vector $\mathbf{x}/\gamma \sim \mathcal{N}(0, \Upsilon)$, and ξ modeled as an unknown deterministic parameter, is given by $(\mathbf{H}_{\varepsilon}^{\theta})^{-1}$, where

$$\mathbf{H}_{\xi}^{\boldsymbol{\theta}} = \begin{bmatrix} \mathbf{H}^{\boldsymbol{\theta}'} & \mathbf{0}_{L \times 1} \\ \mathbf{0}_{1 \times L} & \frac{N}{2\xi^2} \end{bmatrix}.$$
 (5)

< □ > < 同 > < 回 > < 回 > < 回 >

э

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

BCRB for
$$\boldsymbol{\theta} = [\mathbf{x}, \boldsymbol{\gamma}, \boldsymbol{\xi}]$$

Proposition

For the signal model in (3), the HCRB on the MSE matrix $\mathbf{E}_{\xi}^{\theta}$ of the unknown random vector $\boldsymbol{\theta} = [\mathbf{x}, \boldsymbol{\gamma}, \boldsymbol{\xi}]$, with the conditional

distribution of the unknown compressible vector given by \mathbf{x}/γ is $\mathcal{N}(0, \Upsilon)$, where γ is modeled as an unknown deterministic or random parameter, and the unknown random parameter ξ is distributed as $\mathcal{IG}(\mathbf{c}, \mathbf{d})$, is given by $(\mathbf{H}_{\varepsilon}^{\theta})^{-1}$, where

$$\mathbf{H}_{\xi}^{\boldsymbol{\theta}} = \begin{bmatrix} \mathbf{H}^{\boldsymbol{\theta}'} & \mathbf{0}_{L \times 1} \\ \mathbf{0}_{1 \times L} & \frac{c(c+1)(N/2+c+3)}{d^2} \end{bmatrix}.$$
 (6)

Contributions Noise Variance known: Bounds from the Joint pdf Noise Variance unknown: Bounds from the Joint pdf

MCRB for $oldsymbol{ heta} = [oldsymbol{\gamma}, \xi]$

Theorem

For the signal model in (3), the log likelihood function log $p_{\mathbf{Y};\boldsymbol{\gamma},\xi}(\mathbf{y};\boldsymbol{\gamma},\xi)$ satisfies the regularity condition. Further, the MCRB on the MSE matrix $\mathbf{E}^{\theta}_{\xi}$, of the unknown deterministic vector $\boldsymbol{\theta} = [\boldsymbol{\gamma},\xi]$ is given by $\mathbf{E}^{\theta}_{\xi} \succeq (\mathbf{M}^{\theta}_{\xi})^{-1}$, where

$$\mathbf{M}_{\xi}^{\boldsymbol{\theta}} = \begin{bmatrix} \mathbf{M}_{\xi}^{\boldsymbol{\theta}}(\boldsymbol{\gamma}) & \mathbf{M}_{\xi}^{\boldsymbol{\theta}}(\boldsymbol{\gamma}, \boldsymbol{\xi}) \\ \mathbf{M}_{\xi}^{\boldsymbol{\theta}}(\boldsymbol{\xi}, \boldsymbol{\gamma}) & \mathbf{M}_{\xi}^{\boldsymbol{\theta}}(\boldsymbol{\xi}) \end{bmatrix},$$
(7)

$$(\mathbf{M}_{\xi}^{\theta}(\gamma))_{ij} = \frac{1}{2} \left\{ (\Phi_j^T \Sigma_y^{-1} \Phi_i)^2 \right\}, \, \mathbf{M}_{\theta}^{\xi} = \frac{1}{2} \operatorname{Tr}(\Sigma_y^{-2}) \text{ and}$$

 $(\mathbf{M}_{\xi}^{\theta}(\gamma,\xi))_i = (\mathbf{M}_{\xi}^{\theta}(\xi,\gamma))_i = \frac{\Phi_i^T \Sigma_y^{-2} \Phi_i}{2}.$

ヘロト ヘポト ヘヨト ヘヨト

Lower Bounds on the MSE Performance of $\hat{\mathbf{x}}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\gamma}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\xi}(\mathbf{y})$

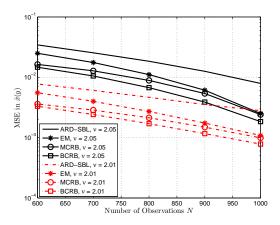


Figure: Plot of the MSE performance of $\hat{\mathbf{x}}(\mathbf{y})$, the corresponding MCRB and BCRB as a function of *N*, where SNR = 40dB.

< □ > < @ >

Lower Bounds on the MSE Performance of $\hat{\mathbf{x}}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\gamma}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\xi}(\mathbf{y})$

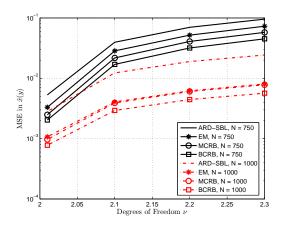


Figure: Plot of the MSE performance of $\hat{\mathbf{x}}(\mathbf{y})$, the corresponding MCRB and BCRB as a function of ν , where SNR = 40dB.

< □ > < @ > <

Lower Bounds on the MSE Performance of $\hat{\mathbf{x}}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\mathbf{\gamma}}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\boldsymbol{\xi}}(\mathbf{y})$

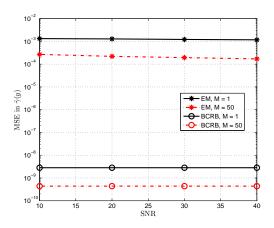


Figure: Plot of the MSE performance of $\hat{\gamma}(\mathbf{y})$ and the corresponding HCRB as a function of SNR, where N = 1000.

< 口 > < 同

Lower Bounds on the MSE Performance of $\hat{\mathbf{x}}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\mathbf{\gamma}}(\mathbf{y})$ Lower Bounds on the MSE Performance of $\hat{\boldsymbol{\xi}}(\mathbf{y})$

SNR(dB)		10	20	30
<i>M</i> = 1	MSE	0.05429	0.05270	0.05132
	MCRB	0.05218	0.05134	0.05070
	BCRB	0.04880	0.04880	0.04880
<i>M</i> = 50	MSE	0.04500	0.03923	0.03476
	MCRB	0.0012	0.0011	0.0010
	BCRB	$9.766 imes 10^{-4}$	$9.766 imes 10^{-4}$	$9.766 imes 10^{-4}$

Table: MSE of the estimator $\hat{\gamma}(\mathbf{y})$, the MCRB and the BCRB as a function of SNR for N = 1500.

(日)

э.

Lower Bounds on the MSE Performance of $\hat{x}(y)$ Lower Bounds on the MSE Performance of $\hat{\gamma}(y)$ Lower Bounds on the MSE Performance of $\hat{\xi}(y)$

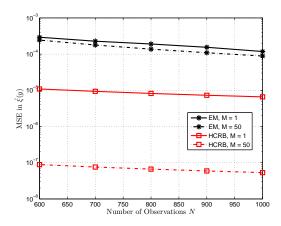


Figure: Plot of MSE performance of $\hat{\xi}(\mathbf{y})$ along with the HCRB as a function of *N*.

Ranjitha P Cramér Rao-Type Bounds for Sparse Bayesian Learning

< □ > < 同 >

ъ

Lower Bounds on the MSE Performance of $\hat{x}(y)$ Lower Bounds on the MSE Performance of $\hat{\gamma}(y)$ Lower Bounds on the MSE Performance of $\hat{\xi}(y)$

N		1500	1700
	MSE	$0.7362 imes 10^{-8}$	$0.6360 imes 10^{-8}$
<i>M</i> = 1	MCRB	$0.3796 imes 10^{-8}$	$0.3071 imes 10^{-8}$
	HCRB	$0.1333 imes 10^{-8}$	$0.1176 imes 10^{-8}$
	MSE	$0.9304 imes 10^{-9}$	$0.8661 imes 10^{-9}$
M = 50	MCRB	$0.6803 imes 10^{-10}$	0.6142×10^{-10}
	HCRB	$0.2666 imes 10^{-10}$	$0.2352 imes 10^{-10}$

Table: MSE of the estimator $\hat{\xi}(\mathbf{y})$, the MCRB and the HCRB as a function of *N*.

(日)

э.