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SMV-SBL

Linear Single Measurement Vector (SMV) SBL model

y = Φx + n,

y ∈ R
N , the measurement matrix Φ ∈ R

N×L: known and
N < L, x ∈ R

L: unknown compressible vector,
n ∼ N (0, σ2), σ2 may be known or unknown.

xj

yi
σ2

j = 1 : L i = 1 : N k = 1 : N

IG(c, d)

nk

N (0, σ2)

γj

y/x ∼ N (Φx, σ2IN×N)

N (0, γj)IG(ν/2, ν/2λ)
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Examples

A vector x is p-compressible if |xi | ≤ Ri−1/p for i = 1, . . . , L

Q: Is it possible to obtain such a compressible signal by
drawing samples from a distribution?

Answer: Yes, such priors are known as compressible
priors.
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Laplace distribution is NOT compressible

Generalized Compressible Prior: x

pX(x) ∝
L∏

i=1

(

1 +
|xi |

τ

ν

)
−(ν+1)/τ

,

where xi ∈ (−∞,∞), τ, ν > 0.
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Figure: Decay profile of the sorted magnitudes of i.i.d. samples
drawn from a Student-t distribution.
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BCRB, HCRB and MCRB

The MSE matrix Eθ is defined as

Eθ , EY,Θr

[

(θ − θ̂(y))(θ − θ̂(y))T
]

,

where Θr denotes the random parameters to be estimated
(whose realization is given by θr ).
Iθ is expressed in terms of the individual blocks of
submatrices, where the (ij)th block is given by

Iθij = −EY,Θr [∇θi∇
T
θj

log pY,Θr ;Θd
(y,θr ;θd )].

A lower bound on the MSE matrix Eθ is given by the
inverse of the FIM:

Eθ �
(

Iθ
)
−1

.
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Known Noise Variance

MCRB from  BCRB from HCRB from MCRB fromp(y, x; γ)

x: random
γ: deterministic

x: random
γ: marginalized

p(y, x)

θ = [γ, x]

γ: deterministicγ: random
x: random x: marginalized

p(y; γ)p(y, x, γ)

Figure: Summary of the lower bounds derived in this work when
noise variance is assumed to be known.
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Unknown Noise Variance

BCRB from HCRB from MCRB from

θ = [γ, x, σ2]

γ: deterministic

p(y, x, σ2; γ)

x: random
σ2: random

γ: deterministic
x: marginalized
σ2: deterministic

γ: random
x: random
σ2: random

p(y; γ, σ2)p(y, x, σ2, γ)

Figure: Different modeling assumptions and the corresponding
bounds derived in this work when noise variance is assumed to be
unknown.
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HCRB for θ = [x, γ]

Proposition

For the signal model in (3), the HCRB on the MSE matrix Eθ of
an unknown vector θ = [x,γ], where the conditional distribution
of the unknown compressible signal x/γ is N (0,Υ) and γ is
modeled as an unknown deterministic parameter, is given by
Eθ � (Hθ)−1, where

Hθ =





(
Φ

T
Φ

σ2 + Υ
−1

)

0L×L

0L×L diag(2γ2
1 , 2γ2

2 , . . . , 2γ2
L)−1



 .
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BCRB for θ = [x, γ]

Proposition

For the signal model in (3), the BCRB on the MSE matrix Eθ of
an unknown random vector θ = [x,γ], where the conditional
distribution of the unknown compressible signal x/γ is N (0,Υ),

the hyperprior distribution on γ is
∏L

i=1 IG
(ν

2
,

ν

2λ

)

, is given by

Eθ � (Bθ)−1, where

Bθ =







(
Φ

T
Φ

σ2 + Υ
−1

)

0L×L

0L×L
λ2(ν + 1)(ν + 7)

2ν
IL×L







.
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MCRB for θ = [γ]

Theorem

For the signal model in (3), the log likelihood function
log pY;γ(y;γ) satisfies the regularity conditions. Further, the
MCRB on the MSE matrix Eγ of the unknown deterministic
vector θ = [γ] is given by Eγ � (Mγ)−1, where the ij th element
of Mγ is given by

Mγ
ij =

1
2
(ΦT

j Σ
−1
y Φi)

2,

for 1 ≤ i , j ≤ L, where Φi is the i th column of Φ, and
Σy = σ2IN×N + ΦΥΦ

T , as defined earlier.
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MCRB for θ = [x]

The Student-t prior,

pX(x) =
(

Γ((ν+1)/2)
Γ(ν/2)

)L (
λ
πν

)L/2
L∏

i=1

(

1 +
λx2

i
ν

)−(ν+1)/2
,

where xi ∈ (−∞,∞), ν, λ > 0, ν: number of degrees of
freedom, λ: inverse variance.

Theorem

For the signal model in (3), the MCRB on the MSE matrix Ex of
the unknown compressible random vector θ = [x] distributed as
(1), is given by Ex � (Mx)−1, where

Mx ,
Φ

T
Φ

σ2 +
λ(ν + 1)

(ν + 3)
IL×L.
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GCP on x:

pX(x) = (
τ

2

(
λ

ν

)1/τ Γ((ν + 1)/τ)

Γ(1/τ)Γ(ν/τ)
)L

L∏

i=1

(

1 +
λ |xi |

τ

ν

)
−(ν+1)/τ

(1)

Theorem

For the signal model in (3), the MCRB on the MSE matrix Eθ
τ of

the unknown random vector θ = [x], where x is distributed by a
GCP in (1) is given by Eθ

τ � (Mθ
τ )−1, where

Mθ
τ =

Φ
T
Φ

σ2 +
τ2(ν + 1)

(ν + τ + 1)

(
λ

ν

)2/τ Γ
(

ν+2
τ

)
Γ

(
2 − 1

τ

)

Γ
( 1

τ

)
Γ

( v
τ

) IL×L, (2)
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Preliminaries

In the Bayesian formulation, the unknown noise variance is
associated with a prior, σ2 ∼ IG(c, d),

pΞ(ξ) =
dc

Γ(c)
ξ(−c−1) exp

{

−
d
ξ

}

; ξ ∈ (0,∞), c, d > 0.

(3)

Under this assumption, one can marginalize the unknown
noise variance and obtain the marginalized likelihood
p(y/x) as,

p(y/x) =
(2d)cΓ(N/2 + c)

Γ(c)(π)N/2

(

(y − Φx)T (y − Φx) + 2d
)
−(N

2 +c)
,

(4)
which is a multivariate Student-t distribution.
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HCRB for θ = [x, γ
︸︷︷︸

θ′

, ξ]

Proposition

For the signal model in (3), the HCRB on the MSE matrix Eθ
ξ of

the unknown vector θ = [x,γ
︸︷︷︸

θ′

, ξ], with the conditional

distribution of the unknown compressible vector
x/γ ∼ N (0,Υ), and ξ modeled as an unknown deterministic
parameter, is given by (Hθ

ξ )−1, where

Hθ
ξ =





Hθ′

0L×1

01×L
N

2ξ2



 . (5)
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BCRB for θ = [x, γ
︸︷︷︸

θ′

, ξ]

Proposition

For the signal model in (3), the HCRB on the MSE matrix Eθ
ξ of

the unknown random vector θ = [x,γ
︸︷︷︸

θ′

, ξ], with the conditional

distribution of the unknown compressible vector given by x/γ is
N (0,Υ), where γ is modeled as an unknown deterministic or
random parameter, and the unknown random parameter ξ is
distributed as IG(c, d), is given by (Hθ

ξ )−1, where

Hθ
ξ =





Hθ′

0L×1

01×L
c(c + 1)(N/2 + c + 3)

d2



 . (6)
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MCRB for θ = [γ, ξ]

Theorem

For the signal model in (3), the log likelihood function
log pY;γ,ξ(y;γ, ξ) satisfies the regularity condition. Further, the
MCRB on the MSE matrix Eθ

ξ , of the unknown deterministic
vector θ = [γ, ξ] is given by Eθ

ξ � (Mθ
ξ )−1, where

Mθ
ξ =

[
Mθ

ξ (γ) Mθ
ξ (γ, ξ)

Mθ
ξ (ξ,γ) Mθ

ξ (ξ)

]

, (7)

(Mθ
ξ (γ))ij =

1
2

{

(ΦT
j Σ

−1
y Φi)

2
}

, Mξ
θ =

1
2

Tr(Σ−2
y ) and

(Mθ
ξ (γ, ξ))i = (Mθ

ξ (ξ,γ))i =
ΦT

i Σ
−2
y Φi

2
.
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Lower Bounds on the MSE Performance of x̂(y)

Lower Bounds on the MSE Performance of γ̂(y)

Lower Bounds on the MSE Performance of ξ̂(y)
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ARD−SBL, ν = 2.05
EM, ν = 2.05
MCRB, ν = 2.05
BCRB, ν = 2.05
ARD−SBL, ν = 2.01
EM, ν = 2.01
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BCRB, ν = 2.01

Figure: Plot of the MSE performance of x̂(y), the corresponding
MCRB and BCRB as a function of N, where SNR = 40dB.

Ranjitha P Cramér Rao-Type Bounds for Sparse Bayesian Learning



System Model of SBL
Compressible Signal

Bayesian Lower Bounds
Simulation Results

Lower Bounds on the MSE Performance of x̂(y)

Lower Bounds on the MSE Performance of γ̂(y)

Lower Bounds on the MSE Performance of ξ̂(y)
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ARD−SBL, N = 750
EM, N = 750
MCRB, N = 750
BCRB, N = 750
ARD−SBL, N = 1000
EM, N = 1000
MCRB, N = 1000
BCRB, N = 1000

Figure: Plot of the MSE performance of x̂(y), the corresponding
MCRB and BCRB as a function of ν, where SNR = 40dB.
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Lower Bounds on the MSE Performance of γ̂(y)

Lower Bounds on the MSE Performance of ξ̂(y)
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EM, M = 1
EM, M = 50
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Figure: Plot of the MSE performance of γ̂(y) and the corresponding
HCRB as a function of SNR, where N = 1000.
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Lower Bounds on the MSE Performance of x̂(y)

Lower Bounds on the MSE Performance of γ̂(y)

Lower Bounds on the MSE Performance of ξ̂(y)

SNR(dB) 10 20 30

M = 1
MSE 0.05429 0.05270 0.05132

MCRB 0.05218 0.05134 0.05070
BCRB 0.04880 0.04880 0.04880

M = 50
MSE 0.04500 0.03923 0.03476

MCRB 0.0012 0.0011 0.0010
BCRB 9.766 × 10−4 9.766 × 10−4 9.766 × 10−4

Table: MSE of the estimator γ̂(y), the MCRB and the BCRB as a
function of SNR for N = 1500.
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Lower Bounds on the MSE Performance of γ̂(y)

Lower Bounds on the MSE Performance of ξ̂(y)
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Figure: Plot of MSE performance of ξ̂(y) along with the HCRB as a
function of N.
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Lower Bounds on the MSE Performance of x̂(y)

Lower Bounds on the MSE Performance of γ̂(y)

Lower Bounds on the MSE Performance of ξ̂(y)

N 1500 1700

M = 1
MSE 0.7362 × 10−8 0.6360 × 10−8

MCRB 0.3796 × 10−8 0.3071 × 10−8

HCRB 0.1333 × 10−8 0.1176 × 10−8

M = 50
MSE 0.9304 × 10−9 0.8661 × 10−9

MCRB 0.6803 × 10−10 0.6142 × 10−10

HCRB 0.2666 × 10−10 0.2352 × 10−10

Table: MSE of the estimator ξ̂(y), the MCRB and the HCRB as a
function of N.
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