Perfect Recovery Conditions for Non-negative Sparse Modeling [Y. Itoh, M. F. Duarte, and M. Parente. TSP Jan. 2017]

Lekshmi Ramesh

Signal Processing for Communications Lab IISc, Bangalore

February 11, 2017

イロト イポト イヨト イヨト

3

Problem setup

• Observations $y \in \mathbb{R}^m$ obtained from the following linear model:

$$y = Ax + e,$$

where $A \in \mathbb{R}^{m \times N}$, $x \in \mathbb{R}^N$, and error $e \in \mathbb{R}^m$

- Coefficient vector x constrained to be non-negative
- Goal: Derive Model Recovery Conditions (MRCs) for the NLASSO

$$\begin{array}{l} \underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \frac{1}{2} \|y - Ax\|_{2}^{2} + \gamma \|x\|_{1} \\ \text{subject to} \quad x \ge 0 \end{array} \tag{P}$$

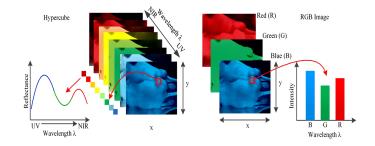
MRC: conditions under which (P) correctly identifies the true support

イロト (日本 (日本 (日本)) 日 うのの

Contributions

- MRCs derived for the NLASSO
- \blacksquare Conditions do not make any assumptions about error e
- Experimental validation of the proposed conditions on hyperspectral imaging dataset
- Proposed recovery guarantees are of non-uniform type (depend on a particular support)

Hyperspectral imaging



- An imaging technique
 - Device collects information about a scene form across the electromagnetic spectrum
 - A hyperspectral data cube is created, each pixel has components in different bands
- Certain objects have unique 'fingerprints' in specific bands of the spectrum–helps in identification

• In the context of hyperspectral imaging:

y: $m \times 1$ vector denoting measured spectrum of a pixel A: $m \times N$ matrix containing N pure spectral signatures (called

endmembers)

x: $N\times 1$ vector containing fractional abundances of the endmembers

Express each mixed pixel as a linear combination of endmembers

x sparse since only few endmembers involved in the observation

Conditions for exact support recovery

- \blacksquare Conditions under which support of solution of NLASSO equals true support Λ
- Positive Subset Coherence (PSC) metric:

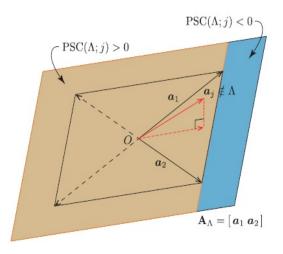
$$\operatorname{PSC}(\Lambda, j) := 1 - \mathbf{1}^{\top} A_{\Lambda}^{\dagger} a_j,$$

where

$$\Lambda \subset [N], |\Lambda| = k$$
$$a_j : j^{th} \text{ column of } A$$

• PSC measures alignment of a_j with the convex cone determined by the columns of A_{Λ}

Positive Subset Coherence



• *H*: hyperplane through a_j , $j \in \Lambda$ PSC $(\Lambda, j) > 0$ when orthogonal projection of a_j onto column space of A_{Λ} is on the same side of *H* as the origin

- $\operatorname{PSC}(\Lambda, j) = 0$ when $j \in \Lambda$
- \blacksquare $\mathrm{PSC}(\Lambda,j)<0$ when a_j well-aligned with convex cone determined by columns of A_Λ
- \blacksquare $\mathrm{PSC}(\Lambda,j)>0$ when a_j less aligned with convex cone determined by columns of A_Λ
- A large PSC preferred

Theorem

Let Λ denote a subset of column indices of the dictionary Asuch that $|\Lambda| = k$ and the columns in A_{Λ} are linearly independent. Let \hat{x} denote the solution of NLASSO. Then $supp(\hat{x}) = \Lambda$ if

$$A_{\Lambda}^{\dagger} y > \gamma (A_{\Lambda}^{\top} A_{\Lambda})^{-1} \mathbf{1}_{k}$$

$$\langle P_{\Lambda}^{\perp} y, a_{j} \rangle < \gamma PSC(\Lambda, j), \quad \forall j \in \Lambda^{C}.$$
(MCC)

MCC: Minimum Coefficient Condition NSCC: Non-linearity vs. Subset Coherence Condition

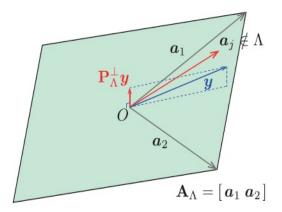
Interpretation of conditions

 $\blacksquare \text{ MCC: } A_{\Lambda}^{\dagger}y > \gamma (A_{\Lambda}^{\top}A_{\Lambda})^{-1}\mathbf{1}_{k}$

Entries of the least squares solution should be large enough

- NSCC: $\langle P_{\Lambda}^{\perp} y, a_j \rangle < \gamma \text{PSC}(\Lambda, j), \quad \forall j \in \Lambda^C$ $P_{\Lambda}^{\perp} y$: Deviation of observation y from the span of A_{Λ} Non-linear distortion that can be tolerated for a $\text{PSC}(\Lambda, j)$
- \blacksquare Dependence of conditions on γ
 - γ high: sparser solution-higher number of missed detections To satisfy MCC, γ should be low enough
 - γ low: denser solution-higher number of false alarms
 To satisfy NSCC, γ should be high enough

Geometry of NSCC



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 11/15

• Define the restricted NLASSO problem:

$$\begin{array}{l} \underset{v_{\Lambda} \in \mathbb{R}^{k}}{\text{minimize}} \frac{1}{2} \| y - A_{\Lambda} v_{\Lambda} \|_{2}^{2} + \gamma \mathbf{1}^{\top} v_{\Lambda} \\ \text{subject to} \quad v_{\Lambda} \geq 0 \end{array}$$

Lagrangian:

$$\mathcal{L}(v_{\Lambda},\lambda) = \frac{1}{2} \|y - A_{\Lambda} v_{\Lambda}\|_{2}^{2} + \gamma \mathbf{1}^{\top} v_{\Lambda} - \lambda^{\top} v_{\Lambda}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 12 / 15

Proof of Theorem (Outline)

• KKT conditions: \hat{v}_{Λ} and $\hat{\lambda}$ optimal iff

- $\hat{v}_{\Lambda} \ge 0$ $\hat{\lambda} \ge 0$ $\hat{v}_{\Lambda}(i)\hat{\lambda}(i) = 0, \quad \forall \ i \in [k]$ $\frac{\partial}{\partial v_{\Lambda}}\mathcal{L}(v_{\Lambda}, \lambda) = 0$ $\implies -A_{\Lambda}^{\top}(y A_{\Lambda}\hat{v}_{\Lambda}) + \gamma \mathbf{1}_{k} \hat{\lambda} = 0$
- Conditions hold for $\hat{\lambda} = 0$ and $\hat{v}_{\Lambda} = A_{\Lambda}^{\dagger} y \gamma (A_{\Lambda}^{\top} A_{\Lambda})^{-1} \mathbf{1}_{k};$ $\hat{v}_{\Lambda} > 0$ by MCC assumption

イロト イロト イヨト イヨト 三日

Proof of Theorem (Outline)

By NSCC:

$$(y - A_{\Lambda}A_{\Lambda}^{\dagger}y)^{\top} < \gamma(1 - \mathbf{1}_{k}^{\top}A_{\Lambda}^{\dagger}a_{j})$$

$$\Leftrightarrow (y - A_{\Lambda}A_{\Lambda}^{\dagger}y + \gamma(A_{\Lambda}^{\dagger})^{\top}\mathbf{1}_{k})^{\top}a_{j} < \gamma$$

$$\Leftrightarrow (y - A_{\Lambda}(A_{\Lambda}^{\dagger}y - \gamma(A_{\Lambda}^{\top}A_{\Lambda})^{-1}\mathbf{1}_{k}))^{\top}a_{j} < \gamma$$

$$\Leftrightarrow (y - A_{\Lambda}\hat{v}_{\Lambda})^{\top}a_{j} < \gamma$$
(A)

■ Can show: Condition (A) \implies supp $(\hat{x}) \subseteq \Lambda$, where \hat{x} is the solution to NLASSO

• Finally, since $\hat{v}_{\Lambda}(i) > 0 \quad \forall i \in [k], \operatorname{supp}(\hat{x}) = \Lambda$

Thank you

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQで 15/15