Rényi Divergence based Covariance Matching Algorithm for Joint Sparse Signal Recovery

Saurabh Khanna,
Signal Processing for Communication, ECE, IISc

Outline

- Joint sparse signal recovery problem
- Covariance matching approach for support recovery
- Covariance matching using Rènyi matrix divergence
- Sub-Sup procedure for minimizing Rènyi matrix divergence
- Demo

Joint sparse signal recovery problem

Multiple measurement vector (MMV) model:

$$
\begin{aligned}
& \mathbf{y}_{j}=\boldsymbol{\Phi} \mathbf{x}_{j}+\mathbf{w}_{j} \quad j=1 \text { to } L \\
& \mathbf{x}_{j} \in \mathbb{R}^{n} \text { are unknown } k \text {-sparse vectors } \\
& \mathbf{y}_{j} \in \mathbb{R}^{m} \text { are the noisy linear measurements } \\
& \mathbf{\Phi} \in \mathbb{R}^{m \times n} \text { is the meas matrix with } m<n \\
& \mathbf{w}_{j} \sim \mathcal{N}\left(0, \sigma_{n}^{2} \mathbf{I}\right) \text { is the meas noise }
\end{aligned}
$$

Vectors $\mathbf{x}_{1}, \mathbf{x}_{2} \ldots \mathbf{x}_{L}$ follow the JSM-2 sparsity model [Duarte, ??].

- \mathbf{x}_{j} have a common nonzero support
- Nonzero entries are uncorrelated

Goal is to recover the joint sparse vectors $\mathbf{X}=\mathbf{x}_{1}, \mathbf{x}_{2} \ldots \mathbf{x}_{L}$ from their noisy linear measurements $\mathbf{Y}=\mathbf{y}_{1}, \mathbf{y}_{2} \ldots \mathbf{y}_{L}$.

Existing JSM-2 algorithms: M-OMP, M-FOCUSS, Row-LASSO, CRL-1/2, M-SBL

A Bayesian approach

Assume a Gaussian-mixture prior on the unknown vectors \mathbf{x}_{j}.

$$
\mathbf{x}_{j}(i) \sim\left(1-s_{i}\right) \mathcal{N}\left(0, \sigma_{z}^{2}\right)+s_{i} \mathcal{N}\left(0, \sigma_{s}^{2}\right), \quad j=1 \text { to } L, i \in[n] .
$$

- $\mathbf{s} \in\{0,1\}^{n}$ denotes the common support of \mathbf{x}_{j}.
- σ_{s}^{2} is the common signal variance of the active coefficients.
- σ_{z}^{2} is the common signal variance of the inactive coefficients.

For $\sigma_{z}^{2}=0$, the prior simplifies to

$$
\mathbf{x}_{j} \sim \mathcal{N}\left(0, \sigma_{s}^{2} \operatorname{diag}(\mathbf{s})\right), \quad j=1 \text { to } L
$$

Given the model parameters $\theta=\left\{\sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}\right\}$, the LMMSE estimate of \mathbf{x}_{j} is computed as:

$$
\hat{\mathbf{x}}_{j}^{\mathrm{MMSE}}=\left(\sigma_{s}^{2} \operatorname{diag}(\mathbf{s}) \boldsymbol{\Phi}^{T}\right)\left(\sigma_{n}^{2} \mathbf{I}_{m}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right)^{-1} \mathbf{y}_{j}
$$

Question: How to find the model $\theta=\left\{\sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}\right\}$ from the observations \mathbf{Y} ?

ML estimation of the model paramters

Goal is to find the ML estimate of the model $\theta=\left\{\sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}\right\}$ given the observations \mathbf{Y}.

$$
\left(\hat{\sigma}_{n}^{2}, \hat{\sigma}_{s}^{2}, \hat{\mathbf{s}}\right)=\underset{\sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}}{\arg \min }-\log p\left(\mathbf{Y} ; \sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}\right)
$$

ML cost:
$-\log p\left(\mathbf{Y} ; \sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}\right) \propto L \log \left|\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \mathbf{\Phi}_{\mathbf{s}} \mathbf{\Phi}_{\mathbf{s}}\right|+\operatorname{Tr}\left(\left(\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \mathbf{\Phi}_{\mathbf{s}} \mathbf{\Phi}_{\mathbf{s}}\right)^{-1} \mathbf{Y} \mathbf{Y}^{T}\right)$

To simplify exposition, assume σ_{s}^{2} and σ_{n}^{2} to be known. Only s needs to be estimated.

ML cost - an interesting interpretation

ML cost:

$$
-\log p(\mathbf{Y} ; \mathbf{s}) \propto L \log \left|\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \mathbf{\Phi}_{\mathbf{s}} \mathbf{\Phi}_{\mathbf{s}}\right|+\operatorname{Tr}\left(\left(\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \mathbf{\Phi}_{\mathbf{s}} \mathbf{\Phi}_{\mathbf{s}}\right)^{-1} \mathbf{Y} \mathbf{Y}^{T}\right)
$$

Bregman matrix divergence with respect to $\phi()=.-\log |$.$| , is defined as:$

$$
\mathcal{D}(\mathbf{X}, \mathbf{Y})=\operatorname{trace}\left(\mathbf{X} \mathbf{Y}^{-1}\right)-\log \left|\mathbf{X} \mathbf{Y}^{-1}\right|-N
$$

ML cost can be interpreted as a matrix divergence:

$$
-\log p(\mathbf{Y} ; \boldsymbol{\gamma})=L \mathcal{D}_{\phi}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}, \sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right)+\underbrace{m-\frac{L}{2} \log \left|\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right|}_{\text {constant }}
$$

We want to find $\hat{\mathbf{s}}$ which minimizes $\mathcal{D}_{\phi}(\underbrace{\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}}_{\text {emp. cov mat }}, \underbrace{\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}}_{\text {param. cov mat }})$.

Generalizing the ML cost using Rényi divergence

We want to find an $\hat{\mathbf{s}}$ which minimizes $\mathcal{D}_{\phi}(\underbrace{\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}}_{\text {emp. cov mat }}, \underbrace{\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}}_{\text {param. cov mat }})$.
Minimizing \mathcal{D}_{ϕ} with respect to s is a combinatorial problem.

Replace \mathcal{D}_{ϕ} with a convenient matrix divergence, which we call α-Rényi matrix divergence,

$$
\mathcal{D}_{\alpha}(\mathbf{X}, \mathbf{Y})=\frac{1}{2(1-\alpha)} \log \frac{|\alpha \mathbf{X}+(1-\alpha) \mathbf{Y}|}{|\mathbf{X}|^{\alpha}|\mathbf{Y}|^{1-\alpha}}
$$

α-Rényi matrix divergence - interesting facts

For any two matrices $\mathbf{X}, \mathbf{Y} \in S_{+}^{n}$., we define α-Rényi matrix divergence as:

$$
\mathcal{D}_{\alpha}(\mathbf{X}, \mathbf{Y}) \triangleq \frac{1}{2(1-\alpha)} \log \frac{|\alpha \mathbf{X}+(1-\alpha) \mathbf{Y}|}{|\mathbf{X}|^{\alpha}|\mathbf{Y}|^{1-\alpha}}
$$

Interesting facts about $\mathcal{D}_{\alpha}(.,$.$) :$

- For $\alpha<1, \mathcal{D}_{\alpha}$ lower bounds $\mathcal{D}_{-\log |.|}$.
- For $\alpha \rightarrow 1$, we have $\mathcal{D}_{\alpha} \rightarrow \mathcal{D}_{-\log |.|}$.
- For $\alpha=1 / 2, \mathcal{D}_{\alpha}$ is symmetric in arguments and is called the Jensen-Bregman-Log-Det divergence.

$$
\mathcal{D}_{1 / 2}(\mathbf{X}, \mathbf{Y})=\log \left|\frac{\mathbf{X}+\mathbf{Y}}{2}\right|-\frac{1}{2} \log |\mathbf{X}|-\frac{1}{2} \log |\mathbf{Y}|
$$

- \mathcal{D}_{α} is a type of Jensen difference divergence.
- \mathcal{D}_{α} appears as an error exponent while analyzing the error probability in multi class hypothesis testing.

Modified support recovery problem

We formulate support recovery as the below optimization problem:
$\hat{\mathbf{s}}=\underset{\mathbf{s}}{\arg \max } \log \left|\alpha \mathbf{R}_{\mathbf{Y}}+(1-\alpha)\left(\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right)\right|-(1-\alpha) \log \left|\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right|$.

The objective can be interpreted as a difference of two submodular functions in \mathbf{s}.

Claim:
For any positive definite matrix \mathbf{A}, a generic $n \times p$ matrix \mathbf{B} and constant $\beta>0$, the set function $f(S)=\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right|$ is submodular.

Why the submodularity property is interesting ?
Any submodular function can be minimized adequately by a fast greedy algorithm.

Submodular functions

Let $f: U \rightarrow \mathbb{R}^{+}$be a set function.

- Then, f is called monotone if $f(S \cup\{a\}) \geq f(S)$, for all $S \subset U, a \in U \backslash S$.
- Further, f is called a submodular function if it satisfies

$$
f(S \cup\{a\})-f(S) \geq f(T \cup\{a\})-f(T) \quad \text { (Law of diminishing returns) }
$$

for all elements $a \in U \backslash T$ and all pairs of subsets S, T such that $S \subseteq T \subseteq U$.

- If above always holds with equality, then f is called a modular function.

Submodularity

Submodular functions exhibit the "diminishing returns" property.
"For a submodular function, the incremental gain from adding an extra element in the set decreases with the size of the set".

Examples of submodular functions:
i Column rank of a matrix
ii Cardinality of a set
iii Joint entropy of a set of random variables
iv Capacity of a MIMO channel w.r.t. the set of active transmitter antennas [Vaze and Ganapathy, 12]

Question: What makes submodular functions interesting ?

Optimizing submodular functions

[Nemhauser and Wolsey, 1978, An analysis of approximations for maximizing submodular set functions]

For a non negative, monotone submodular set function $f: 2^{V} \rightarrow \mathbb{R}^{+}$, let $S \subseteq V$ be a subset of size k obtained by selecting elements one at a time, each time choosing an an element that provides the largest marginal increase in the functional value.

Let S^{*} be a set that maximizes the value of f over all k-sized subsets of V.

Then, $f(S) \geq\left(1-\frac{1}{e}\right) f\left(S^{*}\right)$.
In other words, S provides a $\left(1-\frac{1}{e}\right)$ approximation of $f\left(S^{*}\right)$.

Submodularity of $\log |$.

For any positive definite matrix \mathbf{A}, a generic $n \times p$ matrix \mathbf{B} and constant $\beta>0$, the set function $f(S)=\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right|$ is submodular.

Proof:
i $f(S) \geq 0$ for all for $S \subseteq[n]$.

$$
\begin{aligned}
f(S)=\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right| & =\log |\mathbf{A}|+\log \left|\mathbf{I}+\beta \mathbf{A}^{-1} \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right| \\
& =\log |\mathbf{A}|+\log \left|\mathbf{I}+\beta \mathbf{B}_{S}^{T} \mathbf{A}^{-1} \mathbf{B}_{S}\right|
\end{aligned}
$$

The rest follows from positive definiteness of \mathbf{A} and $\mathbf{B}_{S}^{T} \mathbf{A}^{-1} \mathbf{B}_{S}$.
ii f is monotone. Let $S \subset T \subseteq[n]$.

$$
\begin{aligned}
f(T)-f(S) & =\log \left|\mathbf{A}+\beta \mathbf{B}_{T} \mathbf{B}_{T}^{T}\right|-\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right| \\
& =\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}+\beta \mathbf{B}_{T \backslash S} \mathbf{B}_{T \backslash S}^{T}\right|-\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right| \\
& =\log \left|\mathbf{I}+\beta\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{B}_{T \backslash S} \mathbf{B}_{T \backslash S}^{T}\right| \\
& =\log |\mathbf{I}+\beta \underbrace{\mathbf{B}_{T \backslash S}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{B}_{T \backslash S}}_{\text {positive definite }}| \geq 0 .
\end{aligned}
$$

Submodularity of $\log |$.

For any positive definite matrix \mathbf{A}, a generic $n \times p$ matrix \mathbf{B} and constant $\beta>0$, the set function $f(S)=\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right|$ is submodular.

Proof:
i $f(S) \geq 0$ for all for $S \subseteq[n]$.
ii f is monotone.
iii f satisfies "diminishing returns" property.
Let S, T be arbitrary subsets of $[n]$ such that $S \subseteq T$. Let $a \in([n] \backslash T)$

$$
\begin{aligned}
f(S \cup\{a\})-f(S) & =\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}+\beta \mathbf{b}_{a} \mathbf{b}_{a}^{T}\right|-\log \left|\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right| \\
& =\log \left|\mathbf{I}+\beta\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{b}_{a} \mathbf{b}_{a}^{T}\right| \\
& =\log \left|1+\beta \mathbf{b}_{a}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{b}_{a}\right|
\end{aligned}
$$

Likewise, we can show that

$$
f(T \cup\{a\})-f(T)=\log \left|1+\beta \mathbf{b}_{a}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{T} \mathbf{B}_{T}^{T}\right)^{-1} \mathbf{b}_{a}\right|
$$

Further, using matrix inversion lemma,

$$
\mathbf{b}_{a}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{T} \mathbf{B}_{T}^{T}\right)^{-1} \mathbf{b}_{a}=\mathbf{b}_{a}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{b}_{a}
$$

$$
-\mathbf{b}_{a}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{B}_{T \backslash S}\left(\frac{1}{\beta} \mathbf{I}+\mathbf{B}_{T \backslash S}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{B}_{T \backslash S}\right)^{-1} \mathbf{B}_{T \backslash S}^{T}\left(\mathbf{A}+\beta \mathbf{B}_{S} \mathbf{B}_{S}^{T}\right)^{-1} \mathbf{b}
$$

Rest follows from the monotonicity of $\log (1+x)$.

Proposed support recovery scheme

Recover support s by solving the below optimization:

$$
\hat{\mathbf{s}}=\arg \max \underbrace{\log \left|\alpha \mathbf{R}_{\mathbf{Y}}+(1-\alpha)\left(\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right)\right|}_{\text {submodular in } \mathbf{s}}-(1-\alpha) \underbrace{\log \left|\sigma_{n}^{2} \mathbf{I}+\sigma_{s}^{2} \mathbf{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right|}_{\text {submodular in } \mathbf{s}}
$$

The objective is a difference of two submodular functions in s.

Can we minimize the difference of two submodular functions in a computationally efficient manner?

Supermodular-submodular (SupSub) procedure ${ }^{1}$

[^0]
Sub-Sup algorithm

Let V be the base set. Let $f: 2^{V} \rightarrow \mathbb{R}$ and $g: 2^{V} \rightarrow \mathbb{R}$ be two submodular functions. Then, we want to solve:

$$
\min _{X \subseteq V} f(X)-g(X) .
$$

Sub-Sup procedure: (a majorization-minimization approach)
i Construct a tight modular lower bound $h($.$) for g($.$) such that$ $h\left(X_{t}\right)=g\left(X_{t}\right)$ and $h(X) \leq g(X)$ for $X \neq X_{t}$.
ii Minimize the submodular upper bound for $f(X)-g(X)$, i.e.

$$
X_{t+1}=\underset{X \subseteq V}{\arg \min } f(X)-h(X) .
$$

iii Repeat steps (i) and (ii) until convergence (i.e., $X_{t+1}=X_{t}$).

The Sub-Sup procedure monotonically reduces the objective in each iteration.
$f\left(X_{t}\right)-g\left(X_{t}\right)=f\left(X_{t}\right)-h\left(X_{t}\right) \geq f\left(X_{t+1}\right)-h\left(X_{t+1}\right) \geq f\left(X_{t+1}\right)-g\left(X_{t+1}\right)$.

Modular lower bound for a submodular function

[Narasimhan \& Bilmes, '12] ${ }^{2}$
A tight modular lower bound $\mathrm{h}($.$) for the submodular g($.$) :$
Suppose that $g: 2^{V} \rightarrow \mathbb{R}$ is a submodular function.
Let π be any permutation of the set V.
Let $W_{i}=\{\pi(1), \pi(2), \ldots, \pi(i)\}$, so that $W_{|V|}=V$.
We define a function $h: V \rightarrow \mathbb{R}$ as follows:

$$
h(\pi(i))= \begin{cases}g\left(W_{1}\right) & \text { if } i=1 \\ g\left(W_{i}\right)-g\left(W_{i-1}\right) & \text { otherwise }\end{cases}
$$

Extend elementwise function h to all subsets of V by defining

$$
h(A)=\sum_{x \in A} h(x) \quad \text { for every } A \subseteq V .
$$

Then,

1. $h(A) \leq g(A)$ for every $A \subseteq V$.
2. $h\left(W_{m}\right)=g\left(W_{m}\right)$ for every $1 \leq m \leq|V|$.
[^1]
[^0]: ${ }^{1}$ Rishabh lyer and Jeff Bilmes, Algorithms for approximate minimization of difference between submodular functions, with applications.

[^1]: ${ }^{2}$ Mukund Narasimhan and Jeff Bilmes, A submodular-supermodular procedure with applications to discriminative structure learning.

