Rényi Divergence based Covariance Matching Algorithm for Joint Sparse Signal Recovery

Saurabh Khanna,

Signal Processing for Communication, ECE, IISc

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

- Joint sparse signal recovery problem
- Covariance matching approach for support recovery
- Covariance matching using Rènyi matrix divergence
- Sub-Sup procedure for minimizing Rènyi matrix divergence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Demo

Joint sparse signal recovery problem

Multiple measurement vector (MMV) model:

$$\mathbf{y}_j = \mathbf{\Phi} \mathbf{x}_j + \mathbf{w}_j$$
 $j = 1$ to L

$$\begin{split} \mathbf{x}_j \in \mathbb{R}^n \text{ are unknown } k-\text{sparse vectors} \\ \mathbf{y}_j \in \mathbb{R}^m \text{ are the noisy linear measurements} \\ \mathbf{\Phi} \in \mathbb{R}^{m \times n} \text{ is the meas matrix with } m < n \\ \mathbf{w}_i \sim \mathcal{N}(0, \sigma_n^2 \mathbf{I}) \text{ is the meas noise} \end{split}$$

Vectors $\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_L$ follow the JSM-2 sparsity model [Duarte, ??].

- x_i have a common nonzero support
- Nonzero entries are uncorrelated

Goal is to recover the joint sparse vectors $\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_L$ from their noisy linear measurements $\mathbf{Y} = \mathbf{y}_1, \mathbf{y}_2 \dots \mathbf{y}_L$.

Existing JSM-2 algorithms: M-OMP, M-FOCUSS, Row-LASSO, CRL-1/2, M-SBL

A Bayesian approach

Assume a Gaussian-mixture prior on the unknown vectors x_i .

$$\mathbf{x}_j(i) \sim (1 - s_i)\mathcal{N}(0, \sigma_z^2) + s_i\mathcal{N}(0, \sigma_s^2), \quad j = 1 \text{ to } L, \ i \in [n].$$

s ∈ {0,1}ⁿ denotes the common support of x_j.
σ_s² is the common signal variance of the active coefficients.

• σ_z^2 is the common signal variance of the inactive coefficients.

For $\sigma_z^2 = 0$, the prior simplifies to

$$\mathbf{x}_j \sim \mathcal{N}(0, \sigma_s^2 \operatorname{diag}(\mathbf{s})), \qquad j = 1 \text{ to } L.$$

Given the model parameters $\theta = \{\sigma_s^2, \sigma_n^2, s\}$, the LMMSE estimate of x_j is computed as:

$$\hat{\mathbf{x}}_{j}^{\mathsf{MMSE}} = \left(\sigma_{s}^{2} \mathrm{diag}(\mathbf{s}) \boldsymbol{\Phi}^{T}\right) \left(\sigma_{n}^{2} \mathbf{I}_{m} + \sigma_{s}^{2} \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^{T}\right)^{-1} \mathbf{y}_{j}$$

Question: How to find the model $\theta = \{\sigma_s^2, \sigma_n^2, s\}$ from the observations **Y**?

ML estimation of the model paramters

Goal is to find the ML estimate of the model $\theta = \{\sigma_s^2, \sigma_n^2, s\}$ given the observations **Y**.

$$\left(\hat{\sigma}_{n}^{2}, \hat{\sigma}_{s}^{2}, \hat{\mathbf{s}}\right) = \underset{\sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s}}{\arg\min} - \log p(\mathbf{Y}; \sigma_{s}^{2}, \sigma_{n}^{2}, \mathbf{s})$$

ML cost:

$$-\log p(\mathbf{Y}; \sigma_s^2, \sigma_n^2, \mathbf{s}) \propto L \log |\sigma_n^2 \mathbf{I} + \sigma_s^2 \mathbf{\Phi}_{\mathbf{s}} \mathbf{\Phi}_{\mathbf{s}}| + Tr\left(\left(\sigma_n^2 \mathbf{I} + \sigma_s^2 \mathbf{\Phi}_{\mathbf{s}} \mathbf{\Phi}_{\mathbf{s}}\right)^{-1} \mathbf{Y} \mathbf{Y}^T\right)$$

To simplify exposition, assume σ_s^2 and σ_n^2 to be known. Only s needs to be estimated.

ML cost - an interesting interpretation

ML cost:

$$-\log p(\mathbf{Y}; \mathbf{s}) \propto L \log |\sigma_n^2 \mathbf{I} + \sigma_s^2 \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}| + Tr \left(\left(\sigma_n^2 \mathbf{I} + \sigma_s^2 \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}} \right)^{-1} \mathbf{Y} \mathbf{Y}^T \right)$$

Bregman matrix divergence with respect to $\phi(.) = -\log |.|$, is defined as:

$$\mathcal{D}(\mathbf{X}, \mathbf{Y}) = \operatorname{trace}(\mathbf{X}\mathbf{Y}^{-1}) - \log|\mathbf{X}\mathbf{Y}^{-1}| - N$$

ML cost can be interpreted as a matrix divergence:

$$-\log p(\mathbf{Y}; \boldsymbol{\gamma}) = L\mathcal{D}_{\phi}\left(\frac{1}{L}\mathbf{Y}\mathbf{Y}^{T}, \sigma_{n}^{2}\mathbf{I} + \sigma_{s}^{2}\boldsymbol{\Phi}_{s}\boldsymbol{\Phi}_{s}^{T}\right) + \underbrace{m - \frac{L}{2}\log|\frac{1}{L}\mathbf{Y}\mathbf{Y}^{T}|}_{\text{constant}}$$

constant

We want to find
$$\hat{\mathbf{s}}$$
 which minimizes $\mathcal{D}_{\phi} \left(\underbrace{\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}}_{\text{emp. cov mat}}, \underbrace{\sigma_{n}^{2} \mathbf{I} + \sigma_{s}^{2} \Phi_{s} \Phi_{s}^{T}}_{\text{param. cov mat}} \right).$

Generalizing the ML cost using Rényi divergence

Minimizing \mathcal{D}_{ϕ} with respect to s is a combinatorial problem.

Replace \mathcal{D}_{ϕ} with a convenient matrix divergence, which we call α -Rényi matrix divergence,

$$\mathcal{D}_{\alpha}(\mathbf{X}, \mathbf{Y}) = \frac{1}{2(1-\alpha)} \log \frac{|\alpha \mathbf{X} + (1-\alpha)\mathbf{Y}|}{|\mathbf{X}|^{\alpha} |\mathbf{Y}|^{1-\alpha}}.$$

(日) (日) (日) (日) (日) (日) (日)

α -Rényi matrix divergence - interesting facts

For any two matrices $\mathbf{X}, \mathbf{Y} \in S^n_+$, we define α -Rényi matrix divergence as:

$$\mathcal{D}_{\alpha}(\mathbf{X}, \mathbf{Y}) \triangleq \frac{1}{2(1-\alpha)} \log \frac{|\alpha \mathbf{X} + (1-\alpha)\mathbf{Y}|}{|\mathbf{X}|^{\alpha} |\mathbf{Y}|^{1-\alpha}}$$

Interesting facts about $\mathcal{D}_{\alpha}(.,.)$:

- For $\alpha < 1$, \mathcal{D}_{α} lower bounds $\mathcal{D}_{-\log |.|}$.
- For $\alpha \to 1$, we have $\mathcal{D}_{\alpha} \to \mathcal{D}_{-\log |.|}$.
- For α = 1/2, D_α is symmetric in arguments and is called the Jensen-Bregman-Log-Det divergence.

$$\mathcal{D}_{1/2}(\mathbf{X}, \mathbf{Y}) = \log \left| \frac{\mathbf{X} + \mathbf{Y}}{2} \right| - \frac{1}{2} \log |\mathbf{X}| - \frac{1}{2} \log |\mathbf{Y}|$$

A D F A 同 F A E F A E F A Q A

- \mathcal{D}_{α} is a type of Jensen difference divergence.
- D_α appears as an error exponent while analyzing the error probability in multi class hypothesis testing.

Modified support recovery problem

We formulate support recovery as the below optimization problem:

$$\hat{\mathbf{s}} = \arg \max_{\mathbf{s}} \log \left| \alpha \mathbf{R}_{\mathbf{Y}} + (1 - \alpha) \left(\sigma_n^2 \mathbf{I} + \sigma_s^2 \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^T \right) \right| - (1 - \alpha) \log \left| \sigma_n^2 \mathbf{I} + \sigma_s^2 \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^T \right|.$$

The objective can be interpreted as a difference of two submodular functions in s.

Claim:

For any positive definite matrix \mathbf{A} , a generic $n \times p$ matrix \mathbf{B} and constant $\beta > 0$, the set function $f(S) = \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T|$ is submodular.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Why the submodularity property is interesting ?

Any submodular function can be minimized <u>adequately</u> by a fast greedy algorithm.

Submodular functions

Let $f: U \to \mathbb{R}^+$ be a set function.

▶ Then, *f* is called monotone if $f(S \cup \{a\}) \ge f(S)$, for all $S \subset U, a \in U \setminus S$.

Further, f is called a submodular function if it satisfies

 $f(S \cup \{a\}) - f(S) \geq f(T \cup \{a\}) - f(T) \qquad (\text{Law of diminishing returns})$

for all elements $a \in U \setminus T$ and all pairs of subsets S, T such that $S \subseteq T \subseteq U$.

If above always holds with equality, then f is called a modular function.

Submodularity

Submodular functions exhibit the "diminishing returns" property.

"For a submodular function, the incremental gain from adding an extra element in the set decreases with the size of the set".

Examples of submodular functions:

- i Column rank of a matrix
- ii Cardinality of a set
- iii Joint entropy of a set of random variables
- iv Capacity of a MIMO channel w.r.t. the set of active transmitter antennas [Vaze and Ganapathy, 12]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Question: What makes submodular functions interesting ?

Optimizing submodular functions

[Nemhauser and Wolsey, 1978, An analysis of approximations for maximizing submodular set functions]

For a non negative, monotone submodular set function $f: 2^V \to \mathbb{R}^+$, let $S \subseteq V$ be a subset of size k obtained by selecting elements one at a time, each time choosing an an element that provides the largest marginal increase in the functional value.

A D F A 同 F A E F A E F A Q A

Let S^* be a set that maximizes the value of f over all k-sized subsets of V.

Then, $f(S) \ge (1 - \frac{1}{e})f(S^*)$.

In other words, S provides a $(1 - \frac{1}{e})$ approximation of $f(S^*)$.

Submodularity of log |.|

For any positive definite matrix \mathbf{A} , a generic $n \times p$ matrix \mathbf{B} and constant $\beta > 0$, the set function $f(S) = \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T|$ is submodular.

Proof:

 $\text{i} \ \ f(S) \geq 0 \text{ for all for } S \subseteq [n].$

$$\begin{split} f(S) &= \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T| = \log |\mathbf{A}| + \log |\mathbf{I} + \beta \mathbf{A}^{-1} \mathbf{B}_S \mathbf{B}_S^T| \\ &= \log |\mathbf{A}| + \log |\mathbf{I} + \beta \mathbf{B}_S^T \mathbf{A}^{-1} \mathbf{B}_S| \end{split}$$

The rest follows from positive definiteness of \mathbf{A} and $\mathbf{B}_{S}^{T}\mathbf{A}^{-1}\mathbf{B}_{S}$.

ii f is monotone. Let $S \subset T \subseteq [n]$.

$$\begin{aligned} f(T) - f(S) &= \log |\mathbf{A} + \beta \mathbf{B}_T \mathbf{B}_T^T| - \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T| \\ &= \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T + \beta \mathbf{B}_{T \setminus S} \mathbf{B}_{T \setminus S}^T| - \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T| \\ &= \log \left| \mathbf{I} + \beta \left(\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T \right)^{-1} \mathbf{B}_{T \setminus S} \mathbf{B}_{T \setminus S}^T \right| \\ &= \log \left| \mathbf{I} + \beta \underbrace{\mathbf{B}_{T \setminus S}^T \left(\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T \right)^{-1} \mathbf{B}_{T \setminus S}}_{\text{positive definite}} \right| \ge 0. \end{aligned}$$

Submodularity of $\log |$.

For any positive definite matrix \mathbf{A} , a generic $n \times p$ matrix \mathbf{B} and constant $\beta > 0$, the set function $f(S) = \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T|$ is submodular.

Proof:

- $\text{i} \ \ f(S) \geq 0 \text{ for all for } S \subseteq [n].$
- ii f is monotone.
- iii f satisfies "diminishing returns" property.

Let S, T be arbitrary subsets of [n] such that $S \subseteq T$. Let $a \in ([n] \setminus T)$

$$\begin{aligned} f(S \cup \{a\}) - f(S) &= \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T + \beta \mathbf{b}_a \mathbf{b}_a^T| - \log |\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T| \\ &= \log |\mathbf{I} + \beta \left(\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T\right)^{-1} \mathbf{b}_a \mathbf{b}_a^T| \\ &= \log |1 + \beta \mathbf{b}_a^T \left(\mathbf{A} + \beta \mathbf{B}_S \mathbf{B}_S^T\right)^{-1} \mathbf{b}_a| \end{aligned}$$

Likewise, we can show that

$$f(T \cup \{a\}) - f(T) = \log |1 + \beta \mathbf{b}_a^T \left(\mathbf{A} + \beta \mathbf{B}_T \mathbf{B}_T^T\right)^{-1} |\mathbf{b}_a|$$

Further, using matrix inversion lemma,

$$\mathbf{b}_{a}^{T} \left(\mathbf{A} + \beta \mathbf{B}_{T} \mathbf{B}_{T}^{T} \right)^{-1} \mathbf{b}_{a} = \mathbf{b}_{a}^{T} \left(\mathbf{A} + \beta \mathbf{B}_{S} \mathbf{B}_{S}^{T} \right)^{-1} \mathbf{b}_{a}$$
$$-\mathbf{b}_{a}^{T} \left(\mathbf{A} + \beta \mathbf{B}_{S} \mathbf{B}_{S}^{T} \right)^{-1} \mathbf{B}_{T \setminus S} \left(\frac{1}{\beta} \mathbf{I} + \mathbf{B}_{T \setminus S}^{T} \left(\mathbf{A} + \beta \mathbf{B}_{S} \mathbf{B}_{S}^{T} \right)^{-1} \mathbf{B}_{T \setminus S} \right)^{-1} \mathbf{B}_{T \setminus S}^{T} \left(\mathbf{A} + \beta \mathbf{B}_{S} \mathbf{B}_{S}^{T} \right)^{-1} \mathbf{b}$$
Rest follows from the monotonicity of $\log(1 + x)$.

Proposed support recovery scheme

Recover support ${\bf s}$ by solving the below optimization:

$$\hat{\mathbf{s}} = \arg \max_{\mathbf{s}} \underbrace{\log \left| \alpha \mathbf{R}_{\mathbf{Y}} + (1 - \alpha) \left(\sigma_n^2 \mathbf{I} + \sigma_s^2 \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^T \right) \right|}_{\text{submodular in s}} - (1 - \alpha) \underbrace{\log \left| \sigma_n^2 \mathbf{I} + \sigma_s^2 \boldsymbol{\Phi}_{\mathbf{s}} \boldsymbol{\Phi}_{\mathbf{s}}^T \right|}_{\text{submodular in s}}$$

The objective is a difference of two submodular functions in s.

Can we minimize the difference of two submodular functions in a computationally efficient manner?

Supermodular-submodular (SupSub) procedure¹

¹Rishabh Iyer and Jeff Bilmes, Algorithms for approximate minimization of difference between submodular functions, with applications.

Sub-Sup algorithm

Let V be the base set. Let $f:2^V\to\mathbb{R}$ and $g:2^V\to\mathbb{R}$ be two submodular functions. Then, we want to solve:

$$\min_{X\subseteq V} f(X) - g(X).$$

Sub-Sup procedure: (a majorization-minimization approach)

i Construct a tight modular lower bound h(.) for g(.) such that $h(X_t) = g(X_t)$ and $h(X) \le g(X)$ for $X \ne X_t$.

ii Minimize the submodular upper bound for f(X) - g(X), i.e. $X_{t+1} = \underset{X \subset V}{\arg\min} f(X) - h(X)$.

iii Repeat steps (i) and (ii) until convergence (i.e., $X_{t+1} = X_t$).

The Sub-Sup procedure monotonically reduces the objective in each iteration.

$$f(X_t) - g(X_t) = f(X_t) - h(X_t) \ge f(X_{t+1}) - h(X_{t+1}) \ge f(X_{t+1}) - g(X_{t+1}).$$

Modular lower bound for a submodular function

[Narasimhan & Bilmes, '12]²

A tight modular lower bound h(.) for the submodular g(.):

Suppose that $g: 2^V \to \mathbb{R}$ is a submodular function.

Let π be any permutation of the set V.

Let $W_i = \{\pi(1), \pi(2), \dots, \pi(i)\}$, so that $W_{|V|} = V$.

We define a function $h: V \to \mathbb{R}$ as follows:

$$h(\pi(i)) = \begin{cases} g(W_1) & \text{if } i = 1\\ g(W_i) - g(W_{i-1}) & \text{otherwise} \end{cases}$$

Extend elementwise function h to all subsets of V by defining

$$h(A) = \sum_{x \in A} h(x) \qquad \text{ for every } A \subseteq V.$$

Then,

1.
$$h(A) \leq g(A)$$
 for every $A \subseteq V$.
2. $h(W_m) = g(W_m)$ for every $1 \leq m \leq |V|$

²Mukund Narasimhan and Jeff Bilmes, A submodular-supermodular procedure with applications to discriminative structure learning.