
Rényi Divergence based Covariance
Matching Algorithm for Joint Sparse Signal

Recovery

Saurabh Khanna,

Signal Processing for Communication, ECE, IISc

Outline

I Joint sparse signal recovery problem

I Covariance matching approach for support recovery

I Covariance matching using Rènyi matrix divergence

I Sub-Sup procedure for minimizing Rènyi matrix divergence

I Demo

Joint sparse signal recovery problem

Multiple measurement vector (MMV) model:

yj = Φxj + wj j = 1 toL

xj ∈ Rn are unknown k−sparse vectors
yj ∈ Rm are the noisy linear measurements
Φ ∈ Rm×n is the meas matrix with m < n

wj ∼ N (0, σ2
nI) is the meas noise

Vectors x1,x2 . . .xL follow the JSM-2 sparsity model [Duarte, ??].
I xj have a common nonzero support
I Nonzero entries are uncorrelated

Goal is to recover the joint sparse vectors X = x1,x2 . . .xL from their noisy
linear measurements Y = y1,y2 . . .yL.

Existing JSM-2 algorithms: M-OMP, M-FOCUSS, Row-LASSO, CRL-1/2, M-SBL
...

A Bayesian approach
Assume a Gaussian-mixture prior on the unknown vectors xj .

xj(i) ∼ (1− si)N (0, σ2
z) + siN (0, σ2

s), j = 1 to L, i ∈ [n].

I s ∈ {0, 1}n denotes the common support of xj .
I σ2

s is the common signal variance of the active coefficients.

I σ2
z is the common signal variance of the inactive coefficients.

For σ2
z = 0, the prior simplifies to

xj ∼ N (0, σ2
sdiag(s)), j = 1 to L.

Given the model parameters θ =
{
σ2
s , σ

2
n, s
}

, the LMMSE estimate of xj is
computed as:

x̂MMSE
j =

(
σ2
sdiag(s)Φ

T
)(

σ2
nIm + σ2

sΦsΦ
T
s

)−1
yj

Question: How to find the model θ =
{
σ2
s , σ

2
n, s
}

from the observations Y?

ML estimation of the model paramters

Goal is to find the ML estimate of the model θ =
{
σ2
s , σ

2
n, s
}

given the
observations Y. (

σ̂2
n, σ̂

2
s , ŝ
)
= arg min

σ2
s ,σ

2
n,s

− log p(Y;σ2
s , σ

2
n, s)

ML cost:

− log p(Y;σ2
s , σ

2
n, s) ∝ L log |σ2

nI + σ2
sΦsΦs| + Tr

((
σ2
nI + σ2

sΦsΦs
)−1

YYT
)

To simplify exposition, assume σ2
s and σ2

n to be known. Only s needs to be
estimated.

ML cost - an interesting interpretation
ML cost:

− log p(Y; s) ∝ L log |σ2
nI + σ2

sΦsΦs| + Tr
((
σ2
nI + σ2

sΦsΦs
)−1

YYT
)

Bregman matrix divergence with respect to φ(.) = − log |.|, is defined as:

D(X,Y) = trace(XY−1)− log |XY−1| −N

ML cost can be interpreted as a matrix divergence:

− log p(Y;γ) = LDφ
(

1

L
YYT , σ2

nI + σ2
sΦsΦ

T
s

)
+m−

L

2
log |

1

L
YYT |︸ ︷︷ ︸

constant

We want to find ŝ which minimizes Dφ

 1

L
YYT︸ ︷︷ ︸

emp. cov mat

, σ2
nI + σ2

sΦsΦ
T
s︸ ︷︷ ︸

param. cov mat

.

Generalizing the ML cost using Rényi divergence

We want to find an ŝ which minimizes Dφ

 1

L
YYT︸ ︷︷ ︸

emp. cov mat

, σ2
nI + σ2

sΦsΦ
T
s︸ ︷︷ ︸

param. cov mat

.

Minimizing Dφ with respect to s is a combinatorial problem.

Replace Dφ with a convenient matrix divergence, which we call α-Rényi matrix
divergence,

Dα(X,Y) =
1

2(1− α)
log
|αX + (1− α)Y|
|X|α |Y|1−α

.

α-Rényi matrix divergence - interesting facts

For any two matrices X,Y ∈ Sn+., we define α-Rényi matrix divergence as:

Dα(X,Y) ,
1

2(1− α)
log
|αX + (1− α)Y|
|X|α |Y|1−α

Interesting facts about Dα(., .):
I For α < 1, Dα lower bounds D− log |.|.
I For α→ 1, we have Dα → D− log |.|.
I For α = 1/2, Dα is symmetric in arguments and is called the

Jensen-Bregman-Log-Det divergence.

D1/2(X,Y) = log

∣∣∣∣X + Y

2

∣∣∣∣− 1

2
log |X| −

1

2
log |Y|

I Dα is a type of Jensen difference divergence.
I Dα appears as an error exponent while analyzing the error probability in

multi class hypothesis testing.

Modified support recovery problem

We formulate support recovery as the below optimization problem:

ŝ = arg max
s

log
∣∣∣αRY + (1− α)

(
σ2
nI + σ2

sΦsΦ
T
s

)∣∣∣−(1−α) log ∣∣∣σ2
nI + σ2

sΦsΦ
T
s

∣∣∣.

The objective can be interpreted as a difference of two submodular functions in s.

Claim:
For any positive definite matrix A, a generic n× p matrix B and constant β > 0,
the set function f(S) = log |A + βBSBT

S | is submodular.

Why the submodularity property is interesting ?
Any submodular function can be minimized adequately by a fast greedy
algorithm.

Submodular functions

Let f : U → R+ be a set function.

I Then, f is called monotone if f(S ∪ {a}) ≥ f(S), for all S ⊂ U, a ∈ U\S.

I Further, f is called a submodular function if it satisfies

f(S ∪ {a})− f(S) ≥ f(T ∪ {a})− f(T) (Law of diminishing returns)

for all elements a ∈ U\T and all pairs of subsets S, T such that S ⊆ T ⊆ U .

I If above always holds with equality, then f is called a modular function.

Submodularity

Submodular functions exhibit the “diminishing returns” property.

“For a submodular function, the incremental gain from adding an extra element in
the set decreases with the size of the set”.

Examples of submodular functions:
i Column rank of a matrix
ii Cardinality of a set
iii Joint entropy of a set of random variables
iv Capacity of a MIMO channel w.r.t. the set of active transmitter antennas

[Vaze and Ganapathy, 12]

Question: What makes submodular functions interesting ?

Optimizing submodular functions

[Nemhauser and Wolsey, 1978, An analysis of approximations for maximizing
submodular set functions]

For a non negative, monotone submodular set function f : 2V → R+, let S ⊆ V
be a subset of size k obtained by selecting elements one at a time, each time
choosing an an element that provides the largest marginal increase in the
functional value.

Let S∗ be a set that maximizes the value of f over all k-sized subsets of V .

Then, f(S) ≥ (1− 1
e
)f(S∗).

In other words, S provides a (1− 1
e
) approximation of f(S∗).

Submodularity of log |.|
For any positive definite matrix A, a generic n× p matrix B and constant β > 0,
the set function f(S) = log |A + βBSBT

S | is submodular.

Proof:
i f(S) ≥ 0 for all for S ⊆ [n].

f(S) = log |A + βBSBT
S | = log |A|+ log |I + βA−1BSBT

S |
= log |A|+ log |I + βBT

SA−1BS |

The rest follows from positive definiteness of A and BT
SA−1BS .

ii f is monotone. Let S ⊂ T ⊆ [n].

f(T)− f(S) = log |A + βBTBT
T | − log |A + βBSBT

S |
= log |A + βBSBT

S + βBT\SBT
T\S | − log |A + βBSBT

S |

= log

∣∣∣∣I + β
(
A + βBSBT

S

)−1
BT\SBT

T\S

∣∣∣∣
= log

∣∣∣∣∣∣∣∣∣I + βBT
T\S

(
A + βBSBT

S

)−1
BT\S︸ ︷︷ ︸

positive definite

∣∣∣∣∣∣∣∣∣ ≥ 0.

Submodularity of log |.|
For any positive definite matrix A, a generic n× p matrix B and constant β > 0,
the set function f(S) = log |A + βBSBT

S | is submodular.

Proof:
i f(S) ≥ 0 for all for S ⊆ [n].
ii f is monotone.
iii f satisfies “diminishing returns” property.

Let S, T be arbitrary subsets of [n] such that S ⊆ T . Let a ∈ ([n]\T)

f(S ∪ {a})− f(S) = log |A + βBSBT
S + βbab

T
a | − log |A + βBSBT

S |

= log |I + β
(
A + βBSBT

S

)−1
bab

T
a |

= log |1 + βbTa

(
A + βBSBT

S

)−1
ba|

Likewise, we can show that

f(T ∪ {a})− f(T) = log |1 + βbTa

(
A + βBTBT

T

)−1
ba|

Further, using matrix inversion lemma,

b
T
a

(
A + βBTB

T
T

)−1
ba = b

T
a

(
A + βBSB

T
S

)−1
ba

−b
T
a

(
A + βBSB

T
S

)−1
BT\S

(
1

β
I + B

T
T\S

(
A + βBSB

T
S

)−1
BT\S

)−1

B
T
T\S

(
A + βBSB

T
S

)−1
ba

Rest follows from the monotonicity of log(1 + x).

Proposed support recovery scheme

Recover support s by solving the below optimization:

ŝ = arg max
s

log
∣∣∣αRY + (1− α)

(
σ2
nI + σ2

sΦsΦ
T
s

)∣∣∣︸ ︷︷ ︸
submodular in s

−(1−α) log
∣∣∣σ2
nI + σ2

sΦsΦ
T
s

∣∣∣︸ ︷︷ ︸
submodular in s

.

The objective is a difference of two submodular functions in s.

Can we minimize the difference of two submodular functions in a computationally
efficient manner?

Supermodular-submodular (SupSub) procedure1

1
Rishabh Iyer and Jeff Bilmes, Algorithms for approximate minimization of difference between submodular

functions, with applications.

Sub-Sup algorithm

Let V be the base set. Let f : 2V → R and g : 2V → R be two submodular
functions. Then, we want to solve:

min
X⊆V

f(X)− g(X).

Sub-Sup procedure: (a majorization-minimization approach)

i Construct a tight modular lower bound h(.) for g(.) such that
h(Xt) = g(Xt) and h(X) ≤ g(X) for X 6= Xt.

ii Minimize the submodular upper bound for f(X)− g(X), i.e.
Xt+1 = arg min

X⊆V
f(X)− h(X).

iii Repeat steps (i) and (ii) until convergence (i.e., Xt+1 = Xt).

The Sub-Sup procedure monotonically reduces the objective in each iteration.

f(Xt)− g(Xt) = f(Xt)−h(Xt) ≥ f(Xt+1)−h(Xt+1) ≥ f(Xt+1)− g(Xt+1).

Modular lower bound for a submodular function

[Narasimhan & Bilmes, ’12]2
A tight modular lower bound h(.) for the submodular g(.):

Suppose that g : 2V → R is a submodular function.

Let π be any permutation of the set V .

Let Wi = {π(1), π(2), . . . , π(i)}, so that W|V | = V .

We define a function h : V → R as follows:

h(π(i)) =

{
g(W1) if i = 1

g(Wi)− g(Wi−1) otherwise

Extend elementwise function h to all subsets of V by defining

h(A) =
∑
x∈A

h(x) for every A ⊆ V.

Then,
1. h(A) ≤ g(A) for every A ⊆ V .
2. h(Wm) = g(Wm) for every 1 ≤ m ≤ |V |.

2
Mukund Narasimhan and Jeff Bilmes, A submodular-supermodular procedure with applications to

discriminative structure learning.

