Markov Decision Theoretic Pilot Allotment & Receive Antenna Selection

Reuben George Stephen

SPC Lab, Indian Institute of Science, Bangalore-560012 (reubengs@ece.iisc.ernet.in)

March 10, 2012

Reuben G S (IISc)

Decision Theoretic Receive Antenna Selection

March 10, 2012 1 / 27

- Antenna Selection
- Motivation
- 2 Decision Theory
 - MDP
 - POMDP
- **3** POMDP Formulation
- 4 Solving the POMDP
- 5 Simulations
- 6 Conclusion and Future Work

- Popular technique to reduce hardware costs
- Uses fewer RF chains than actual number of antenna elements
- Process signals from a dynamically selected subset of antennas only
- Achieves same diversity order as a full-complexity system [Molisch and Win, 2004]

- Several algorithms proposed assuming perfect CSI at the receiver ([Wang et al., 2010] & references therein)
- In practice, CSI needs to be acquired
- Imperfect CSI \Rightarrow inaccurate selection, imperfect data decoding \Rightarrow increased SEP [Kristem et al., 2010]
- But, AS achieves same full diversity order as with perfect CSI even with channel estimation errors [Gucluoglu and Panayirci, 2008]
- Concentrate on single receive antenna selection

- Consider packet reception, time divided into frames
- \bullet Correlated time-varying channel \Rightarrow could exploit correlation to aid in antenna selection decision
- With pilot-based training, prior information can also aid in deciding how accurately a channel at a particular antenna should be estimated
- Link-level error checks on data packets ⇒ provides additional info on channel state at selected antenna ⇒ can again be used in future pilot allotment/antenna selection decisions.

Figure: Frame structure for training & data reception

- 1 transmit antenna, N receive antennas, 1 RF chain
- Channel at antenna *i*, *h_i*[*k*], constant for whole frame *k*, but correlated across frames
- Receiver can decide how many pilots to receive with antenna i in frame k, l_i[k]

• Allocation of $\ell_i[k]$ would influence selection decision and hence, the throughput

Objective

In each k choose $\ell_i[k] \; \forall i$, select $n \in \{1, \dots, N\}$, to maximize expected long-run throughput

 Problem can be modeled as a partially observable Markov decision process (POMDP)

- Model for agent interacting with world
- No uncertainty about current state

$\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, R \rangle$

$$\begin{split} \mathcal{S} \text{ states} \\ \mathcal{A} \text{ actions} \\ \mathcal{T} : \mathcal{S} \times \mathcal{A} \to \Pi(\mathcal{S}) \text{ state transition function} \\ R : \mathcal{S} \times \mathcal{A} \to \mathbb{R} \text{ reward function} \end{split}$$

- Given $s \in S$ and $a \in A$ at t, s_{t+1} and R_{t+1} independent of all past states and actions
- Objective: Maximize reward over finite/infinite horizon
- Policy $\pi_t : S \to A$

• Agent cannot determine current state with complete reliability

$\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \Omega, \mathcal{O} angle$
$MDP\ \langle \mathcal{S}, \mathcal{A}, \mathcal{T}, R \rangle$
Ω observations
$\mathcal{O}:\mathcal{S} imes\mathcal{A} o\Pi(\Omega)$ observation function

POMDP II

Figure: POMDP agent

- Belief state $b\in\Pi(\mathcal{S}),$ sufficient statistic for past history and initial belief state
- Policy π is now a function of **b**
- Optimal policy is solution of continuous space "belief MDP"

- For simplicity, assume 2-state channel with $h_i[k] \in \{h_0, h_1\}$, $|h_0| \ll |h_1|$, and $h_0, h_1 \in \mathbb{C}$ known to receiver
- Assume that successful packet reception depends only on true channel state, rather than receiver's estimate.

•
$$\mathbf{p}_i = \sqrt{rac{E_{p}}{L}} [1,\ldots,1]^H \in \mathbb{C}^{\ell_i}$$
, vector of pilot symbols

• $\mathbf{y}_i = [y_1, \dots, y_{\ell_i}]^H \in \mathbb{C}^{\ell_i}$, vector of received symbols during training phase

$$\mathbf{y}_i = h_i \mathbf{p} + \mathbf{w} \tag{1}$$

with $\mathbf{w} \sim \mathcal{CN}(\mathbf{0}, \sigma^2 \mathbf{I}_{\ell_i})$

Simplified Channel Model II

Figure: The Gilbert-Elliot channel model

• $h_i[k]$ can be written as

$$h_i[k] = x(h_0 - h_1) + \frac{1}{2}(h_0 + h_1),$$
 (2)

• Let $\mathbf{v} \triangleq \frac{(h_0 - h_1)\mathbf{p}}{|h_0 - h_1| ||\mathbf{p}||}$, and $\tilde{y} \triangleq \mathbf{v}^H \left[\mathbf{y} - \frac{1}{2} (h_0 + h_1) \mathbf{p} \right] = x \left| h_0 - h_1 \right| \left\| \mathbf{p} \right\| + w,$ (3)

where $w \sim C\mathcal{N}(0, \sigma^2)$. March 10, 2012 13 / 27

Simplified Channel Model III

• Since $x \in \mathbb{R}$, $\Re{\{\tilde{y}\}}$ is sufficient to determine *h*.

• Applying the MAP decision rule

$$\Theta_i[k] = \begin{cases} 1, & \text{if } \lambda_i[k] \ge \eta_i \\ 0, & \text{otherwise,} \end{cases}$$
(4)

where

$$\lambda_{i}[k] \triangleq \ln \frac{P_{\ell_{i}}\left(\tilde{y}_{i}[k]|S_{i}[k]=1\right)}{P_{\ell_{i}}\left(\tilde{y}_{i}[k]|S_{i}[k]=0\right)}$$

$$= \frac{\sqrt{\ell_{i}E_{p}}\left|h_{0}-h_{1}\right|\Re\{\tilde{y}\}}{\sigma^{2}/2}.$$
(6)

and

$$\eta_i \triangleq \ln \frac{P(s_i[k] = 0)}{P(s_i[k] = 1)} = \ln \frac{1 - p_{11}^{(i)}}{p_{01}^{(i)}}.$$
(7)

• If $\ell_i = 0$ is used for some *i*, then $\Theta_i = 1$ if $P(S_i = 1) \ge P(S_i = 0)$, and $\Theta_i = 0$ otherwise.

- At beginning of frame k, state of system transits to S[k] = [S_i[k]]^N_{i=1} according to P(s'|s)
- Receiver decides on $I[k] \in \mathcal{L}$ at beginning of frame k, where $\mathcal{L} \triangleq \left\{ I : 1 \le \ell_i \le L, \sum_{i=1}^N \ell_i = N \right\}$
- Based on observation Θ[k] from training phase, receiver selects antenna n ∈ C where C ≜ {1,..., N}
- Error check on data packet performed, resulting in observation $Z[k] \in \{0 \text{ (Error)}, 1 \text{ (No Error)}\}$

Sequence of events II

Figure: Sequence of events

- State Space S ≜ {0,1}^{N+1}, state S_m[k_m], m = 0 denotes training period, m = 1 denotes data packet reception period within a frame k
- Action Space $\mathcal{A} \triangleq \mathcal{L} \times \mathcal{C}$: Two parts:
 - Pilot allocation vector $\mathbf{I} = [\ell_i]_{i=1}^N \in \mathcal{L}$, where $\mathcal{L} \triangleq \left\{ \mathbf{I} : \ell_i \in \{0, \dots, L\} \forall i, \sum_{i=1}^N \ell_i = L \right\}$
 - Antenna selection decision $n \in \mathcal{C} \triangleq \{1, \dots, N\}$
- Observation Space $\Omega \triangleq \Omega_0 \cup \Omega_1$: Also two parts:
 - Binary channel state observations at the antennas, $\mathbf{\Theta}[k_0] = [\Theta_i[k_0]]_{i=1}^N \in \Omega_0 \triangleq \{0,1\}^N$
 - Packet error indication $Z[k_1] \in \Omega_1 \triangleq \{0, 1\}$

• Reward:

• Given decision $\{I[k_m], n[k_m]\}$, and $\mathbf{s}_m[k_m]$,

$$R[k_m] = m \mathbb{1}_{\{s_{m,n}=1\}}$$
(8)

- Expected total discounted reward of POMDP over infinite horizon gives a measure of expected total number of bits that can be delivered
- Belief Vector: **b**[k_m]

• Component $b_{\mathbf{s}_m}[k_m] = P(\mathbf{s}_m | \text{dec. and obs. history}) \in [0,1]$

• Policy:

- π specifies the action to be taken at each decision point
- Optimal policy at decision point k_m (end of decision period k_m − 1) maps the belief vector b[k_m − 1] to an action A[k_m] = {I[k_m], n[k_m]} ∈ A.

• Objective: Find π^*

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{\pi} \left\{ \sum_{\{k_m = 1_0, 1_1, \dots\}} \beta^q R[k_m] \Big| \mathbf{b}[0] \right\}$$
(9)

 $\beta \in [0,1), \ q \triangleq 2(k-1) + m \ \forall k, m$

< 67 ▶

3

Value function I

- V(b[k_m]), represents maximum expected discounted reward that can be obtained starting in the belief state b[k_m].
- Given action $A[k_m + 1]$ and observation $o[k_m + 1]$ reward accumulated starting from point $k_m + 1$ consists of two parts:
 - the immediate reward $R[k_m+1]=m'z$, and
 - the maximum expected future reward $V(\mathbf{b}[k_m+1])$

• Optimality equations (Bellman Equations) can be written as:

$$V(\mathbf{b}[k_0]) = \max_{A \in \mathcal{A}} \sum_{\mathbf{s}_0 \in \mathcal{S}} b_{\mathbf{s}_0}[k_0] \sum_{z \in \Omega_1} P_A(z|\mathbf{b}[k_0]) \cdot [z \cdot 1 + \beta V(f(\mathbf{b}[k_0], A, z))]$$
(10)
$$V(\mathbf{b}[k_1]) = \max_{A \in \mathcal{A}} \sum_{\mathbf{s}_1 \in \mathcal{S}} b_{\mathbf{s}_1}[k_1] \cdot \sum_{\theta \in \Omega_0} \beta P_A(\theta|\mathbf{b}[k_1]) V(f(\mathbf{b}[k_1], A, \theta)).$$
(11)

• Here, $orall o \in \Omega_{m'}$, and $orall A \in \mathcal{A}$,

$$P_{A}(o|\mathbf{b}[k_{m}]) = \sum_{\mathbf{s}'_{m'} \in \mathcal{S}} P_{A}\left(o|\mathbf{s}'_{m'}\right) \sum_{\mathbf{s}_{m} \in \mathcal{S}} b_{\mathbf{s}_{m}}[k_{m}] P(\mathbf{s}'_{m'}|\mathbf{s}_{m})$$
(12)

• For the simple channel model,

$$P_{A}(\Theta_{i}=1|S_{0,i}=s)=Q\left(\kappa_{i}\left(\frac{\eta_{i}}{\kappa_{i}^{2}}-x_{i}\right)\right)$$
(13)

where
$$\kappa_i = |h_0 - h_1| \sqrt{\frac{2\ell_i E_p}{L\sigma^2}}$$
, and $x_i = -\frac{1}{2}$ if $s = 0$ and $x_i = +\frac{1}{2}$ if $s = 1$.

• Updated belief vector, $\mathbf{b}[k_m + 1]$ is obtained applying Bayes' rule, as

$$b_{\mathbf{s}'_{m'}}[k_m+1] = P\left(\mathbf{S}_{m'}[k_m+1] = \mathbf{s}'_{m'}|\mathbf{b}[k_m], A, o\right)$$

=
$$\frac{\sum_{\mathbf{s}_m \in S} b_{\mathbf{s}_m}[k_m]P(\mathbf{s}'_{m'}|\mathbf{s}_m)P_A(o|\mathbf{s}'_{m'})}{\sum_{\mathbf{s}'_{m'} \in S} P_A(o|\mathbf{s}'_{m'})\sum_{\mathbf{s}_m \in S} b_{\mathbf{s}_m}[k_m]P(\mathbf{s}'_{m'}|\mathbf{s}_m)}.$$

Value iteration

- Use 10 and 11 as assignment operation repeatedly, until value converges to V^{\ast}
- If the V* can be computed, can be used directly in a greedy policy to get optimal behavior
- Greedy policy:

$$\pi(\mathbf{b}[k_m]) = \arg \max_{A} \left[\sum_{\mathbf{s}_m \in S} b_{\mathbf{s}_m}[k_m] R[k_m] + \beta \sum_{o \in \Omega_{m'}} P_A(o|\mathbf{b}[k_m]) V^*(\mathbf{b}[k_m+1]) \right]$$
(14)

- For finite horizon, V^* is piecewise linear and convex (PWLC)
- For infinite horizon, V^* is convex but not necessarily PWL
- \therefore a PWL approximation is found and used

- Use PWL property of value function to represent it as finite set of vectors
- Exact Consider entire belief space Grow (Witness algorithm [Littman, 1994]), or Prune (Incremental Pruning [Cassandra et al., 1997]) set of vectors at each iteration
- Approximate Consider finite set of belief points (PBVI [Zhou and Hansen, 2001], SARSOP [Kurniawati et al., 2008], etc.)

- N = 2, L = 4
- Stationary probability of being in good state, $\bar{p}_1 = 0.5$
- Transition probability, $p_{01} = 0.2 \Rightarrow p_{11} = 0.8$
- POMDP solution compared to scheme with equal allocation $\ell_1 = \ell_2 = 2$ and greedy selection in every frame

Figure: Performance plot with N = 2, L = 4

Reuben G S (IISc)

æ

- Problem of pilot allotment and selection modeled as a POMDP
- Performance of POMDP solution compared to that of a naive scheme
- Future work:
 - Consider effect of estimation error on packet error probability
 - Variations of problem

Reuben G S (IISc)

Decision Theoretic Receive Antenna Selection

E ► 4 E ► E ∽ Q C March 10, 2012 27 / 27