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@ Deep Learning for Sparse Signal Processing
© Generative Adversarial Networks

9 Compressive Sensing Using Generative Models
@ New Framework for Sparse Signal Processing

© Coupled Dictionary Learning
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DNN for Sparse Signal Recovery

o Learning to optimize
e Signal processing algorithm is approximated by a Deep Neural Network
(DNN)
o DNN requires only simple arithmetic operations to approximate the
algorithm
o Effectiveness of the proposed approach was demonstrated by
implementing WMMSE algorithm using DNN

@ Sparse signal recovery using DNN: approaches
e Training a DNN using ground truth(y,x)
o Training a DNN using the input/output of a sparse recovery algorithm
o Approximating each layer of a neural network by the input/output of
an iterative sparse recovery algorithm
o Observation
o Performance of the DNN based sparse signal recovery depends on the
architecture of the neural network and number of training data

o Extended Target Detection problem: DNN based implementation
may resolve boundary and block size mismatches
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Generative Adversarial Networks
(GAN)
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Generative Adversarial Network

e Simultaneously learn two models:!

o A generative model G: captures the data distribution
e A discriminative model D: estimates the probability that a sample
came from training data rather than G

@ Training data: X « pgata
e Genarator distribution: G(z) -~ pg

@ D maximizes: the probability of assigning correct label to both
training samples and samples from G

e G minimizes: log (1 — D(G(z)))
min max V(D, G)
G D

(1)
V(D; G) =Expgaual0g D(X)] + Ezop,(z)[log (1 — D(G(2)))]

1 lan J. Goodfellow et al. “Generative Adversarial Networks”. In: CoRR (2014). arXiv: 1406.2661. URL:
http://arxiv.org/abs/1406.2661.
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Generative Adversarial Network

@ For G is fixed, the optimal discriminator D is

% . pdata(x)
DG(X) - pg(x) + pdata(x) (2)

o Proof
V(D.6) = [ panalx) 0(D(x)) + pg(x)log (1 - D()dx (3
@ Maximum of alog(y) + blog(1 — y) is at ;25 iny € [0, 1]

e D maximizes P(y|x)

@ Y indicates whether x from pg or pgdata
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Generative Adversarial Network

@ Cost function during the training of generator
C(G) = mng(D, G)
pdata(x)

pg(x) + pdata(x)
(4)

pdata(x)
pg(x) + pdata(x)

) + EX‘-"pg IOg(

= Exmpdata Iog(

@ The global minimum of C(G) is achieved if and only if pg = Pdata
o C(G)=—log4
e Proof
C(G) = mng(D, G)

(X) + Pdata (X)

X) + X
— —log 4 + KL(paal| P12 Pa(x) * Paaua(x)

2
(5)

@ If G and D have enough capacity, and at each stage of the training,
the discriminator is allowed to reach its optimum given G,then p,

converges to Pdata

) + KL(pgl|
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GAN: Discriminator Training Scheme

e Training of Discriminator

° {x(l) (2)....x§,m)}: samples from data distribution (labels 1)
o {x (1),xé(,2). .xém)}: samples from generative networks (labels 0)

1/0
Discriminator Network K]

Xq [ Xg
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GAN: Generator Training Scheme

@ Training of Generator
@ Discriminator is frozen

@ Generator Network is trained with the desired label at the
discriminator output as 1

Discriminator Network
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Generative Adversarial Network

1. for Number of training iterations do
2. for k steps do

3 Sample minibatch of m noise samples {z(), 2(2)....z(™)} from noise
prior pa(2)
& Sample minibatch of m example {x(), x(?). .. x(M)} from data
generation distribution pgata(X)
5: Update the discriminator by ascending its stochastic gradient
VOD{% > llog D(x') + log (1 — D(G(z')))]} (6)
i=1

e end for
7. Sample minibatch of m noise samples {z(!), z(2)..z(™)} from noise prior

P2(2)

8. Update the generator by descending its stochastic gradient

Vo {— Z[Iog (1-D(G())]} (7)

o end for
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Generation of Sparse Signal Vectors using GAN
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Compressive Sensing Using
Generative Models
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Compressive Sensing Using GAN

@ System model

y=Ax+n ye R™! Aec R™" x ¢ R™! ®
Ix|lo =k ke€{1,2,3..}

@ The generative models learns a mapping from low dimensional
representation space z € R¥ to the high dimensional sample space
G(z) e R"

@ Proposed algorithm: Find a mapping between observation vectors y
and the vectors in the latent space z

@ Mapping between measurement space and latent space is obtained by
minimizing the following loss function?

V(z) = ||AG(z) - yII” (9)

2 Ashish Bora et al. “Compressed Sensing using Generative Models”. In: Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 2017, pp. 537-546. URL:
http://proceedings.mlr.press/v70/boral7a.html.
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Sparse Signal Recovery using GAN

Loss =V (G,D)

T/F

Generator Discriminator

Loss = |lY — AG (2)|I*2 Measurement Matrix

Auxiliary Network

Figure: Compressive Sensing using GAN
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New Framework for Sparse Signal
Processing
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New Framework for Sparse Signal Recovery

Measurement
Matrix

Il A% —yill?

» SparseNet ‘

Yi Xi

Discriminator

@ SparseNet : DNN for sparse signal recovery
@ Discriminator network can ensure sparsity

@ May be useful to ensure more general features like block sparsity

(SPC Lab) October 20, 2018 17 / 39



Sparse Signal Recovery using New Framework

@ Training of Discriminator

o Discriminator : Ensures sparsity of x

o Trained using {Data,Label} = {{%;,0},{xx,1}.... }

@ Training of SparseNet

e Discriminator is frozen
e DNN is trained by simultaneously minimizing the loss function

min AV/(D, G) + AEyp,ly — AG(y)|”
V(D,G) = Ey.p,[log (1 — D(G(y)))]

o A&\, Loss weights can be specified during the training phase

(10)
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Sparse Signal Recovery
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Sparse Signal Recovery
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Adaptive Signal Recovery

Measurement
Matrix

Il A% —yill?

» SparseNet ‘

Yi Xi

Discriminator

@ Training of G does not require unknown sparse vector x

@ Update the weights and biases of the DNN during signal recovery
phase
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Comparison of Adaptive Vs Non-Adaptive
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Comparison of Adaptive Vs Non-Adaptive
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Probability of Error in Support

Comparison of Adaptive Vs Non-Adaptive
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Comparison of Adaptive Vs Non-Adaptive
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Comparison with Other Algorithms
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Comparison with Other Algorithms
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Training Sets with Different Cardinality
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Training Sets with Different Cardinality
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Intuitive Explanation Under Bayesian Framework

o Signal Model:
y=Ax+n yeR™ Ac R™" x e R™,
| (11)
Ix[lp < K n~ N(O»X)

o Likelihood term is given by,

P A

plylx, A) = (5=) exp(—5ly — Ax|[?)
27 2 (12)

A
log(p(ylx, \)) = —51ly — Ax|I2 + F(3)
@ Maximum Likelihood Estimation of x with sparsity constraint is

X = argmax p(y|x, \)
xeS (13)

S={x:lxllo< K}
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Intuitive Explanation Under Bayesian Framework

@ For G is fixed, the optimal discriminator D is

Pdata (X)
pg(x) + pdata(x)

D% (x) = (14)

@ The global minimum of C(G) is achieved if and only if pg = pdata-

C(G) = mng(D, G)

pg(x) + Pdata (X)
2

pg(x) + Pdata (X))

= _|Og4+ KL(pdataH 2

) + KL(pg||
(15)

o Discriminator ensures pg = pdata = X = G(y) € S
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Intuitive Explanation Under Bayesian Framework

@ Optimization problem during the training phase becomes

. 1
min__(~log4)\1 + Aa— > |lyi — AG(y)|’
i=1

GG(y)eS (16)

m : Number of samples in a minibatch

@ Above cost function is proportional to the log likelihood of
{y1,y2-ym}
@ Px(x): uniform prior over S

@ The new framework tries to give a MAP estimate of x with prior
distribution Px(x) or ML estimate on the set of k sparse vectors
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Coupled Dictionary Learning
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Coupled Dictionary Learning using DNN

@ Dictionary Learning of x and y
e 2z, : Sparse representation of x
e zy : Sparse representation of y
@ Coupled Dictionary Learning
o Train a mapping network between z, and z,
e z,: Sparse representation of x and y with respect to coupled dictionary
e Dictionary for x :Decoding network of x
e Dictionary for y :Decoding network of y and mapping network
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Dictionary Learning using K-SVD
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Dictionary Learning using DNN
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Dictionary Learning using DNN
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Dictionary Learning under new Framework

Decoding

Network Yi

Il 7 —ill?
Encoding
Network

Discriminator

Network

@ Decoding network is a single layer MLP with linear activation
functions
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Conclusion

@ The new framework allows to update the inverse function during
testing phase (Adaptive Signal Recovery)

@ The proposed discriminator based scheme can be extended for
arbitrary prior distribution

@ More general features like block sparsity may be ensured using
adversarial training

@ The new framework may be useful for other sparse signal processing
applications like dictionary learning, coupled dictionary learning etc.
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