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Introduction

Introduction

@ Sum-rate maximization problem for Single-User & Multi-User
TDD Massive MIMO systems with finite control overhead.

@ 22% overhead of control signaling in current generation
cellular systems like LTE & LTE-A. Control overhead much
higher for next generation Massive MIMO systems.

@ Fixed codebook based beamforming (precoding) in the
downlink. Optimization of the achievable sum-rate by
assigning non-overlapping beams to different users.

@ Only the precoder index and the power allocated to the beams
should be sent to the UEs.

@ TDD Systems: Reduced Channel feedback overhead, Channel
estimation by using channel reciprocity or reverse channel
training.
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System Model & Problem Statement

System Model

@ Consider a MIMO wireless system with one BS and multiple
UEs. Number of transmit and receive antennas are N; (at the
BS) and N, (at each UE) respectively. Let K be the number
of users.

@ Scenario: MIMO Broadcast channel. BS transmits signals to
all the UEs at the same time instant.

@ The transmitted signal s and received signal y, at the k"
receiver are given by

i
[M]=

kask (1)

1/=1

x
Il

Y = H. s + wy (2)
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System Model & Problem Statement

@ Hy is the N,xN; channel of the k™ receiver.

@ wy is the additive noise at the k™" user with distribution
CN(O, JzIN,)

@ Codebook C = [vy,...,vy] € CNN

@ The received signal at the kth UE is thus

K
Y :HkZCSj—i-Wk (3)
Jj=1

where s; = [s;(1), ..., s;(N)] .
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System Model & Problem Statement

@ The rate achievable for the k™ user is given by

Ry = logdet (IN, + V;lHde’kCHHkH) (4)
where
K
i=1
Tk

is the interference plus noise covariance matrix and
@, = diag([Pk(1), P«(2), ..., Pc(N)]) is the signal covariance
matrix of the k" user.
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System Model & Problem Statement

@ Downlink Sum-Rate of the whole system is given by

K
Riot = 3 logdet (l,v, n v;lch¢kc”H';) (6)
k=1

PN

Z logdet (IN, + V;llzlkd)klfll:) (7)
k=1

where H, = H,C.

@ Goal: To maximize the sum-rate R1,; under a total transmit
power constraint Ppax.
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System Model & Problem Statement

Problem Statement

@ The problem statement is given by

K

- ~ H

imi Idt(l v—1H¢H> 8
mfff'.%fe; ogde N, TV, H @Ry ()
subject to

K
Tr Zq)k < Pmax
k=1
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Majorization-Minimization Principle

Majorization-Minimization (or Minorization-Maximization)
Principle

@ MM algorithm proceeds by solving a simple convex
optimization problem in place of a complex non-convex
optimization problem.

@ Surrogate convex function which bounds the objective
function either from above (for minimization) or below (for
maximization) is computed.

@ A function g(x|x(™) is said to majorize a real-valued function
f(x) at x(m) if

g(x|x(M) > f(x),vx € C
g(x(m)‘x(m)) — f(x(m))
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Majorization-Minimization Principle

@ Minimization of the surrogate function followed by finding another
surrogate function at the new iterate.

@ lterative Algorithm which has monotonic convergence property.

@ Monotonic decrease property of the MM algorithm provides
numerical stability and solve for the minimizer of f(x) after a
certain number of iterations.

@ Globally convergent algorithm which will converge to a local
optimum point.

@ Majorization relation between functions is closed under the
formation of sums, nonnegative products, limits, and composition
with an increasing function. (This property is exploited for MU
case.)

@ For more details, refer to the tutorial “A Tutorial on MM
algorithms”, by D. Hunter and K. Lange.
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Proposed Algorithms: SMM & IMM

Proposed Algorithms

@ Square-Root-MM (SMM)

@ Inverse-MM (IMM)

@ SMM & IMM algorithms were designed for Single-User and
Multi-User cases respectively.

@ SMM was extended to Multi-User case also.

@ Both algorithms give same performance but complexity of

IMM is lesser than that of SMM.
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Proposed Algorithms: SMM & IMM

Lemma (1)

For matrices Z, Y = 0, the non-convex function

f(Z,Y) = logdet (Z71Y) (9)

can be lower bounded by

F(Z,Y)> - < logdet Z(™ +-Tr ((2(™) (2 — 2™))

logaer (V)™ T (v (v (v) 7)) )

(10)

with equality attained when Z = ZU™ and Y = Y(™).
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Proposed Algorithms: SMM & IMM

o Define the matrix By = (le/\/, + ZJKZI |:|k¢j|:IkH)

@ Majorization Step 1: Applying Lemma 1 to the sum-rate
objective function, the optimization problem is reformulated as

K 1 K

R ZZ —Tr <v§(m)> <02|N, +Zﬁk¢jﬁf>
k=1 j;l
JF#k

K -1
—Tr BS(m) <0'2|N,+Z|:Ik¢j':|kH> (11)
j=1
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Proposed Algorithms: SMM & IMM

@ Single User Case: The first term in the above equation is a
constant which can be removed from the optimization
problem.

o{r Y :argmax{ N, —Tr (B( (%1,
L

-1
:argmin{Tr <B( )( 2y, +HK¢KHK) >}

by
(12)
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Proposed Algorithms: SMM & IMM

@ Define matrices

Fx = Cholesky(Bk) (13)
~ H o~
HKHK
= 14
Sk o2 ( )
FrFlc®:
Xx = w (15)
o
Y =In+ d’!E(SKd’!E( (16)

@ Woodbury's Matrix ldentity:

(A+Ucv)l=Al_AlU(Cl+VAIU) VAL
(17)
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Proposed Algorithms: SMM & IMM

Lemma (2)

For a diagonal and positive semidefinite square matrix Q of any size, the function

=il
£(Q) =Tr (A (B +cac) AH) (18)
can be upper bounded by

(@ <To(k™) e (( (v %) " neic
+cH (B—l)HAH (XY_l)(m) )Q%

- (Y*lx”xvfl)(m) Q%CHB*ICQ%) (19)

where X = AB~1CQ3?, Y = 1 + Q2CHB~1CQ? and

K =AB'A" £ Y~1x"X — y-IxHxy~-ly
+ Y IXHXY—! 4 xy—1xH (20)
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Proposed Algorithms: SMM & IMM

@ Majorization Step 2: Applying (17) and Lemma 2 to the
optimization problem (12),

o) argmin {1 (WiRe + wiRleiscoi )} (1)
K

where

we o YRXEFR + HiFEX Y !
1,K — (22)
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Proposed Algorithms: SMM & IMM

Lemma (3)

For Q, a diagonal and positive semidefinite square matrix of any size and matrices A,
B > 0, the function

£(Q) = Tr (AQBQ) (23)

can be upper bounded by
F(Q) < Tr (AQ<m)BQ<m) ~(B-)ama
+AQ™ (B — AI))Q(’")> +Tr (((B —ANQMA
+AQ™ (B — AI))Q) +ATr (AQ?) (24)

where X is the largest eigenvalue of the matrix B.
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Proposed Algorithms: SMM & IMM

@ Majorization Step 3: Applying Lemma 3 to the optimization
problem,

¢£<m+1) = ar%min {Tr (W%) ¢%< + Wgt',)(d)K)} (25)

where
WA7K = WLK + (SK - )\maxlN) d’;§<W2,K

+ W2,K<1>f< (Sk — AmaxIn) (26)
Wi k = AmaxWo k (27)

and Apax is the largest eigenvalue of the matrix Sk.
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Proposed Algorithms: SMM & IMM

@ The Lagrangian is given below:
N
S (WA P + WGP

i=1
N
+77<ZPK(i)_Pmax> (28)
i=1

The analytical solution for (28) is given below.

wal oY

2w, 1)

Pk(i) =

(29)
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Proposed Algorithms: SMM & IMM

@ Majorization Step 1 is same as that of SMM.

K -1 K
Rrot 2 4 —Tr (V‘[’”) <a2lN,+ZHk¢jF|’:>
k=1

j=1
J#k

K -1
~Tr (B <a2|N,+ZF|k¢,-H':> (30)
j=1
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Proposed Algorithms: SMM & IMM

@ We form the extended channel matrix, signal covariance
matrix as follows

¢ = dlag (¢17 ceey ¢K) € RKNXKN
& = diag (01, ..., D, 021y, ) RENENXKNEN)

v, = [I:Ik, oy, IN,} € CNXKN+N) 1 K
= =wowll cCNVN =1 K
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Proposed Algorithms: SMM & IMM

@ We consider the two terms of (30) separately and combine to get the final
optimization problem.

K K
S ((v(k’"))’IZﬁij:’) (35)

k=1 j=1
ik
K u o, K
3T (ﬁk (V) Ry ¢,)
k=1 =1
Ik
K
=S (Q(km)é) —Tr (Q(m)é) (36)
k=1
where
R, = A (v(k"’)) Ay (37)
Q\" = diag (R, -...On, ... Ry, O, ) (38)
K
Q™ =3%"q\" (39)
k=1
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Proposed Algorithms: SMM & IMM

Result from Matrix Analysis:

For a matrix A = 0 and R = TST", we can upper bound the
function f(R) = Tr (AR™?) as

Tr (ARY) <Tr <A (R(’"))_1 TS(mg-1g(mTH (R(m))_l

(40)
with equality achieved at § = S(™).
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Proposed Algorithms: SMM & IMM

@ The second term in (30)

~1
K K
ST B | 0PIy, + > Ak Ay
k=1 =1
K
=y T (Bi"=) (41)
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Proposed Algorithms: SMM & IMM

Applying (40) in (41),

ST (B(km)z;l)

(42)

where
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Proposed Algorithms: SMM & IMM

The Lagrangian is given by

K N
(m) i
Z Z < [Q " ] ((k—1)N+i,(k—1)N+i) Pk(’)

(m) 1
+ [Z((k—l)NH,(k—l)NH)] Pk(,-)>

The solution for the optimal power allocation is

[z(m)] . .
Py (i) = ((k=1)N-+i,(k—1)N+i) (44)

[Q(m)] + Nopt

((k—1)N-+i,(k—1)N-+i)

Vi=1,...,Nand k=1,..., K. Since the objective function is strictly decreasing, the

Lagrangian multiplier can be computed by line search.
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Proposed Algorithms: SMM & IMM

SMM for Multi-User Case

@ The lower bound for the sum-rate is taken from (30)

K -1 K
Ryt ZZ{ —Tr <<V$(m)> <0’2|N,+Z|:Ik¢j|:|kH>>
k=1

=1
J#k
K -1
—Tr (Bim) <0'2|N, + Z Flkd)j':lkH) ) } (45)
=1

@ The first term in (45) is handled in the same way as IMM.
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Proposed Algorithms: SMM & IMM

@ We define an extended channel matrix and covariance matrix as follows
W, = [ﬁk,...,ﬁk] € CNKN | — 1, K (46)
® = diag (¢4, ..., Dk ) € RKVKN (47)
@ Second term in (45) is thus

-1

K K
ST (B [ Py, + S AeAy
k=1 j=1

K
= Z Tr (BE(’") (g’2|Nr + \ilkd)\ilkH) 71) (48)
k=1

@ (48) can be handled in the same way as Single User case.
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Proposed Algorithms: SMM & IMM

@ Final Optimal power allocations:

2
(m)
(i) — [WA Li,i)
()= - i=1,...,KN
2 ([WB L;,i) + [Q(m)](i,i) +n°pt>
49
where (49)
K
W, = ZWA,k
k=1
K
Wpg = ZWB,k
k=1
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Proposed Algorithms: SMM & IMM

SMM Algorithm

Input HK, C, Pmax, 0
Output: Pk (1),..., Pk(N)
1: Initialize PK(l) , Pk (N) with random positive values which satisfies the

12:
13:
14:
15:

FOOLPNOUEWN

maximum power constraint

Compute Sk, Bk using (14)

Hyx = HKC

Amax = maximum of eigen values of Sk

Fx = Cholesky(Bk)

repeat
&y = diag(Pk(1), ..., Pk(N))
Compute Xy, Yk using (15), (16) respectively
Compute Wy i, W, k using (22) respectively
Compute Wy i, Wp k using (26), (27) respectively
Calculate Lagrange multiplier n using line search to satisfy maximum power
constraint Pmax
fori=1toNd

Compute PK( /) using (29)

end for

until convergence criterion is met
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Proposed Algorithms: SMM & IMM

Input: Hy, ..., Hy, C K, Pmax, &
Output: Py(1), ..., P1(N), ..., P (1), ..., Py (N)
> Initialize Py (1), ..., Py(N), ..., Pk(1), ..., Pic(N) with random positive values which satisfies the maximum power constraint
2 fork = 1to K do
3 A =HC
4: end for
5: Compute Wy, ..., Wy using (33)
6: repeat
7 for k = 1to K do
8 ) = diag(Py(1), .-, Pg(N))
9: Compute V using (5)
10: end for
11: Compute ®, & using (31), (32) respectively.
12:  fork=1tokdo
13: Compute =y, Ry, Qy using (34), (37), (38) respectively.
14: end for
15: Compute Q, Z using (39), (43) respectively.
16: Calculate Lagrange multiplier ) using line search to satisfy maximum power constraint Ppax
17: for k = 1to K do
18: for i = 1to N do
19: Compute Py (i) using (44)
20: end for
21: end for
22: until convergence criterion is met
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Results

SMM Convergence
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Results

IMM Convergence
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Results

Performance of SMM Algorithm vs Codebook Size
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Results

Performance of IMM Algorithm vs Codebook Size
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Results

Performance of IMM vs Number of Users
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Results

Individual Users Rate
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Results

Computational Complexity of SMM

Table: Flop Count Analysis for SMM

Matrix | Size Flop Counts

Sk NxN N2(2N, — 1)

Xk | NxN 2NN, (N + N, — 1)

Yk NxN 2N2(2N — 1)
Wik | NxN | N2NN, —2N —r? — 1)
Wy i | NxN N?(4N, — 1) — NN,
Wk | NxN 2N(2N — 1)
Wz | NxN N
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Results

Computational Complexity of IMM

Table: Flop Count Analysis for IMM

Matrix Size Flop Counts ‘
= N,xN, N, (KN + 2N,)
(2(KN + N,) —1)
y4 (KN + Ny)x | K(2N.(KN + 2N,)

(KN+N;) | =1+ (K—1)N)
Q (KN + N,)x KN(K — 1+
(KN+ N,) | (2N, —1)(N + N,))
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