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Motivation

Interference in wireless
network

Limits the communication
rate

Allows users to eavesdrop
other user’s signal

Transmitter 1

Receiver 1

Receiver 2

Transmitter 2

Receiver 1 may be

able to decode

Transmitter 2’s message

Is it possible

Support high throughput

Ensure secrecy

Cooperation between users: both the gains simultaneously?



Effects of Cooperation on Achievable rate
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Figure: Capacity of symmetric linear deterministic IC1

α: coupling between the signal and interference

Loss in rate: isolation between the Tx/Rx
1I. Wang and D. Tse, Interference mitigation through limited transmitter

cooperation, TIT, May 2011



Problem statement

Role of limited transmitter cooperation in a 2-user
interference channel

Interference management

Secrecy

From information theoretic view



System model
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Ŵ2
×

×

(a)

Rx − 1Tx − 1

Tx − 2 Rx − 2

m

n

C

C

(b)

Figure: (a) Gaussian symmetric IC, and (b) Symmetric linear
deterministic IC, with transmitter cooperation.
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Contributions

Outer bounds: SLDIC

Partitioning the encoded message or output based on α

Side information to receivers

Outer bounds: GSIC

Non trivial to extend the bounds developed for the
deterministic case

Difficulty lies in partitioning of the encoded message/output

Finding the analogous quantity for the Gaussian case



Achievable scheme: SLDIC

Interference cancelation

Relaying of other user’s data bits

Time sharing

Random bits transmission

When α ≥ 2: sharing of data bits, random bits or both
depending on the value of C



Achievable scheme: GSIC

Stochastic encoding

Marton’s based coding scheme

Transmission of dummy information by one of the user

Time-sharing

Weak/Moderate interference regime: Dummy information is
treated as noise

High/very high interference: Tries to decode the dummy
information



Achievable scheme: Weak/Moderate intf. regime
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Figure: When (a) C = 0 and (b) C = 1.

Not possible to extend the scheme directly to the Gaussian
case



Achievable scheme contd.

Split the message into two parts

Non-cooperative private (wpi): Stochastic encoding

Cooperative private (wcpi ): Marton’s based coding scheme

Interference caused by the non-intended cooperative private
part is completely canceled at the non-intended receiver

Transmitter 2 sends dummy information



Encoding: Non-cooperative private message

Stochastic encoder: matrix of conditional probability
∑

xpj,i

fpj(xpj ,i |wpj ) = 1, ∀i = 1, 2, . . . ,N,

Transmitter j (j = 1, 2) generates 2N(Rpj+R′

pj ) i.i.d. sequences
of length N at random according to

P(xNpj ) =

N∏

i=1

P(xpj ,i )

Grouping of codewords

Bin 2Bin 1 Bin 2
NRpj

Each bin contains 2
NR′

pj codewords



For transmission of wpj

wpj : selects the bin

w ′

pj : selects the codeword

Dummy message

Transmitter 2 generates 2NRd2 i.i.d. sequences of length N

Grouping of codewords: 2NR′

d2 bins and each bin containing
2NR′′

d2 codewords

Codeword sent: xNd2(w
′

d2,w
′′

d2)



Marton’s coding scheme

For each message mj(j = 1, 2): generate sub-codebook
Cj(mj ) consisting of independently generated uNj sequences

For each message pair: find (uN1 , u
N
2 ) in the product

sub-codebook C1(m1)× C2(m2)

Requirement to succeed (Mutual covering lemma)

(R̃1 − R1) + (R̃2 − R2) > I (U1;U2)

(m1,m2)

m1

m2

Tx

Rx-1

Rx-2

(a) BC Model (b) Marton’s coding scheme



Marton’s coding scheme contd.

Allows U1 and U2 to be arbitrarily correlated

Achieves the following secrecy rate

R1 < I (U1;Y1)

R2 < I (U2;Y2)

R1 + R2 < I (U1;Y1) + I (U2;Y2)− I (U1;U2)

In this work: we choose U1 and U2 to be independent

I (U1;U2) = 0



Encoding for cooperative private part of the message

Generate the cooperative private vector codeword
x
N
cp(wcp1,wcp2) based on Marton’s coding scheme according to

P(xNcp ,u
N
1 ,u

N
2 ) =

N∏

i=1

P(xcp,i , u1,i , u2,i )

u
N
1 (w̃cp1) and u

N
2 (w̃cp2): auxiliary codewords

Transmit codewords:

x
N
1 (wcp1,wcp2,wp1,w

′

p1) = x
N
cp[1] + x

N
p1

x
N
2 (wcp1,wcp2,wp2,w

′

p2,w
′

d2,w
′′

d2) = x
N
cp[2] + x

N
p1 + x

N
d2



Decoding: receiver j looks for a unique message tuple such
that

(yNj ,u
N
j (

ˆ̃w cpj ), x
N
pj (ŵpj , ŵ

′

pj )) ∈ T (N)
ǫ

Choice of codebook parameters for ensuring secrecy

Non-cooperative private message at transmitter 1

R
′

p1 = I (xp1; y2|xp2, u2)

R
′

d2 = I (xd2; y2|xp1, xp2, u2)

Non-cooperative private message at transmitter 2

R
′

p2 = I (xp2; y1|xp1, u1)

R
′′

d2 = I (xd2; y1|xp1, xp2, u1)



Choice of u1 and u2

Chosen such that interference caused by the unintended
cooperative private part is canceled

Advantage

Eliminates interference

Ensures secrecy for the cooperative part

xcp = w1zv1z + w2zv2z ,

u1 = [hd hc ] v1zw1z , and u2 = [hc hd ] v2zw2z

where

v1z , [hd − hc ]
T

v2z , [−hc hd ]
T

w1z and w2z : independent Gaussian with variance σ2
1z and

σ2
2z , respectively



Output at receiver 1

xcp = w1z

[
hd
−hc

]
+ w2z

[
−hc
hd

]

Encoded message at transmitter 1

x1 = xcp[1] + xp1

= hdw1z − hcw2z + xp1

Encoded message at transmitter 2

x2 = xcp[2] + xp2 + xd2

= hdw2z − hcw1z + xp2 + xd2

Output at receiver 1

y1 = hdx1 + hcx2 + z1

= (h2d − h2c)w1z︸ ︷︷ ︸
u1

+hdxp1 + hcxp2 + hcxd2 + z1



Achievable Secrecy Rate: Weak/Moderate Intf. Regime

Achievable scheme

Transmitter 1: sends non-cooperative private and cooperative
private message

Transmitter 2: sends non-cooperative private and cooperative
private message along with dummy message

Separate decoding: treats the dummy message as noise

Theorem

In the weak/moderate interference regime, the following rate is
achievable for the GSIC with limited-rate transmitter cooperation
and secrecy constraints at the receivers:

R1 + R ′

p1 ≤ I (u1, xp1; y1)

R1 + R ′

p1 ≤ I (xp1; y1|u1) + min {C , I (u1; y1|xp1)}

where R ′

p1 = I (xp1; y2|xp2,u2)



Corollary

Using the proposed achievable scheme and time-sharing between
transmitters, following symmetric secrecy rate is achievable:

Rs =
1

2
[R∗

i (1) + R∗

i (2)] , where i = 1, 2

R1(1) ≤





0.5 log
(
1 +

σ2
u+h2

d
Pp1

1+h2cPd2+h2cPp2

)
− R ′

p1,

0.5 log
(
1 +

h2
d
Pp1

1+h2cPd2+h2cPp2

)

+min
{
C , 0.5 log

(
1 + σ2

u

1+h2cPd2+h2cPp2

)}
− R ′

p1

where R ′

p1 = 0.5 log
(
1 +

h2cPp1

1+h2
d
Pd2

)
, σ2

u , (h2d − h2c)
2σ2

z ,

σ2
z , θ1

θ1+θ2

P1

h2
d
+h2c

, Pp1 ,
θ2

θ1+θ2
P1, Pi , βP (i = 1, 2) and

0 ≤ (θi , β) ≤ 1.



Achievable Secrecy Rate: High/Very High Intf. Regime

Achievable scheme

Transmitter 1: sends non-cooperative private and cooperative
private message

Transmitter 2: sends cooperative private and dummy message

Dummy message: transmitter chooses the codeword randomly

Dummy message: not possible to ensure secrecy for the
non-cooperative message

Decoding:

Receiver 1: (yN1 , u
N
1 (

ˆ̃w cp1), x
N
p1(ŵp1, ŵ

′

p1), x
N
d2(ŵd2)) ∈ TN

ǫ

Receiver 2: (yN2 , u
N
2 (

ˆ̃w cp2)) ∈ TN
ǫ



Theorem

In the high/very high interference regime, the following rate is
achievable for the GSIC

R1 + R ′

p1 ≤ I (u1, xp1; y1|xd2)

R1 + R ′

p1 ≤ I (xp1; y1|u1, xd2) + min {I (u1; y1|xp1, xd2),C}

R1 + R ′

p1 + Rd2 ≤ min [I (u1, xp1, xd2; y1), I (xp1, xd2; y1|u1)

+min {I (u1; y1|xp1, xd2),C}]

R1 + R ′

p1 + Rd2 ≤ I (xp1; y1|u1, xd2) + I (u1, xd2; y1|xp1)

R1 + R ′

p1 + 2Rd2 ≤ I (xp1, xd2; y1|u1) + I (u1, xd2; y1|xp1)

R2 ≤ min {I (u2; y2),C}

Rd2 ≤ I (xd2; y1|u1, xp1)

where R1 , Rp1 + Rcp1, R2 , Rcp2 and R ′

p1 and Rd2 are set as
I (xp1; y2|u2) and I (xd2; y2|xp1,u2), respectively.



Outer bounds

Outer bounds: using the intuition gained from deterministic
model

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

α

R
s (

bi
ts

/c
ha

nn
el

 u
se

)

 

 

Outer bound: TP
Outer bound: HY
Outer bound: MM

Figure: GSIC with C = 0, P = 100 and hd = 1.

In the legend

HY: X. He and A. Yener, A new outer bound for the Gaussian
interference channel with confidential messages, CISS 2009

TP: X. Tang, R. Liu, P. Spasojevic, and H. Poor, Interference
assisted secret communication, TIT 2011



Comparison among different schemes
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OB: minimum of outer bounds
AS: with noise insertion
AS: w/o noise insertion
AS: HK−type power allocation

Figure: Achievable secrecy rate and outer bound: P = 20dB, C=0.2



Rate against α
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Figure: GSIC with P = 100, hd = 1: (a) C = 0, (b) C = 1 and (c)
C = 10.



Equivocation computation

Need to show: H(Wp1|y
N
2 ) ≥ N [Rp1 − ǫs ]

H(Wp1|y
N
2 ) ≥ H(Wp1|y

N
2 , x

N
p2,u

N
2 ,W

′′

d2),

≥ N
[
Rp1 + R ′

p1 + R ′

d2

]
− I (xNp1, x

N
d2; y

N
2 |u

N
2 , x

N
p2)

− H(xNp1, x
N
d2|y

N
2 ,u

N
2 , x

N
p2,Wp1,W

′′

d2)

It can be shown:
I (xNp1, x

N
d2; y

N
2 |u

N
2 , x

N
p2) ≤ NI (xp1, xd2; y2|u2, xp2) + Nǫ′



H(xNp1, x
N
d2|y

N
2 ,u

N
2 , x

N
p2,Wp1,W

′′

d2) ≤ Nδ1 provided

R ′

P1 ≤ I (xp1; y2|xd2,u2, xp2)

R ′

d2 ≤ I (xd2; y2|xp1,u2, xp2)

R ′

p1 + R ′

d2 ≤ I (xp1, xd2; y2|u2, xp2)

Equivocation becomes

H(Wp1|y
N
2 ) ≥ N

[
Rp1 + R ′

p1 + R ′

d2 − I (xp1, xd2; y2|u2, xp2)− ǫ1
]

Choose R ′

p1 + R ′

d2 = I (xp1, xd2; y2|u2, xp2) for ensuring
secrecy

Hence, R ′

p1 = I (xp1; y2|xp2,u2) and
R ′

d2 = I (xd2; y2|xp1, xp2,u2)


