The Role of Limited Transmitter Cooperation in Interference Channel with Secret Messages

Parthajit Mohapatra

$15^{\text {th }}$ Feb. 2014

- Motivation
- System model and problem statement
- Contributions
- Inner bounds
- Results and discussion
- Interference in wireless network

- Is it possible
- Support high throughput
- Ensure secrecy
- Cooperation between users: both the gains simultaneously?

Figure: Capacity of symmetric linear deterministic IC^{1}

- α : coupling between the signal and interference
- Loss in rate: isolation between the $\mathrm{Tx} / \mathrm{Rx}$
${ }^{1}$ I. Wang and D. Tse, Interference mitigation through limited transmitter cooperation, TIT, May 2011
- Role of limited transmitter cooperation in a 2-user interference channel
- Interference management
- Secrecy
- From information theoretic view

(a)

(b)

Figure: (a) Gaussian symmetric IC, and (b) Symmetric linear deterministic IC, with transmitter cooperation.

- $m \triangleq\left(\left\lfloor\log \left|h_{d}\right|^{2}\right\rfloor\right)^{+}$and $n \triangleq\left(\left\lfloor\log \left|h_{c}\right|^{2}\right\rfloor\right)^{+}$
- $C \triangleq\left\lfloor C^{G}\right\rfloor$
- Outer bounds: SLDIC
- Partitioning the encoded message or output based on α
- Side information to receivers
- Outer bounds: GSIC
- Non trivial to extend the bounds developed for the deterministic case
- Difficulty lies in partitioning of the encoded message/output
- Finding the analogous quantity for the Gaussian case
- Achievable scheme: SLDIC
- Interference cancelation
- Relaying of other user's data bits
- Time sharing
- Random bits transmission
- When $\alpha \geq 2$: sharing of data bits, random bits or both depending on the value of C
- Achievable scheme: GSIC
- Stochastic encoding
- Marton's based coding scheme
- Transmission of dummy information by one of the user
- Time-sharing
- Weak/Moderate interference regime: Dummy information is treated as noise
- High/very high interference: Tries to decode the dummy information

Figure: When (a) $C=0$ and (b) $C=1$.

- Not possible to extend the scheme directly to the Gaussian case
- Split the message into two parts
- Non-cooperative private ($w_{p i}$): Stochastic encoding
- Cooperative private ($w_{c p i}$): Marton's based coding scheme
- Interference caused by the non-intended cooperative private part is completely canceled at the non-intended receiver
- Transmitter 2 sends dummy information

Encoding: Non-cooperative private message

- Stochastic encoder: matrix of conditional probability

$$
\sum_{x_{p j}, i} f_{p j}\left(x_{p j, i} \mid w_{p j}\right)=1, \quad \forall i=1,2, \ldots, N,
$$

- Transmitter $j(j=1,2)$ generates $2^{N\left(R_{p j}+R_{p j}^{\prime}\right)}$ i.i.d. sequences of length N at random according to

$$
P\left(\mathbf{x}_{p j}^{N}\right)=\prod_{i=1}^{N} P\left(x_{p j, i}\right)
$$

- Grouping of codewords

- For transmission of $w_{p j}$
- $w_{p j}$: selects the bin
- $w_{p j}^{\prime}$: selects the codeword
- Dummy message
- Transmitter 2 generates $2^{N R_{d 2}}$ i.i.d. sequences of length N
- Grouping of codewords: $2^{N R_{d 2}^{\prime}}$ bins and each bin containing $2^{N R_{d 2}^{\prime \prime}}$ codewords
- Codeword sent: $\mathbf{x}_{d 2}^{N}\left(w_{d 2}^{\prime}, w_{d 2}^{\prime \prime}\right)$
- For each message $m_{j}(j=1,2)$: generate sub-codebook $C_{j}\left(m_{j}\right)$ consisting of independently generated u_{j}^{N} sequences
- For each message pair: find $\left(u_{1}^{N}, u_{2}^{N}\right)$ in the product sub-codebook $C_{1}\left(m_{1}\right) \times C_{2}\left(m_{2}\right)$
- Requirement to succeed (Mutual covering lemma)

$$
\left(\widetilde{R_{1}}-R_{1}\right)+\left(\widetilde{R_{2}}-R_{2}\right)>I\left(U_{1} ; U_{2}\right)
$$

(a) BC Model

(b) Marton's coding scheme

- Allows U_{1} and U_{2} to be arbitrarily correlated
- Achieves the following secrecy rate

$$
\begin{aligned}
& R_{1}<I\left(U_{1} ; Y_{1}\right) \\
& R_{2}<I\left(U_{2} ; Y_{2}\right) \\
& R_{1}+R_{2}<I\left(U_{1} ; Y_{1}\right)+I\left(U_{2} ; Y_{2}\right)-I\left(U_{1} ; U_{2}\right)
\end{aligned}
$$

- In this work: we choose U_{1} and U_{2} to be independent

$$
I\left(U_{1} ; U_{2}\right)=0
$$

- Generate the cooperative private vector codeword $\mathbf{x}_{c p}^{N}\left(w_{c p 1}, w_{c p 2}\right)$ based on Marton's coding scheme according to

$$
P\left(\mathbf{x}_{c p}^{N}, \mathbf{u}_{1}^{N}, \mathbf{u}_{2}^{N}\right)=\prod_{i=1}^{N} P\left(\mathbf{x}_{c p, i}, u_{1, i}, u_{2, i}\right)
$$

- $\mathbf{u}_{1}^{N}\left(\widetilde{w}_{c p 1}\right)$ and $\mathbf{u}_{2}^{N}\left(\widetilde{w}_{c p 2}\right)$: auxiliary codewords
- Transmit codewords:
- $\mathbf{x}_{1}^{N}\left(w_{c p 1}, w_{c p 2}, w_{p 1}, w_{p 1}^{\prime}\right)=\underline{\mathbf{x}}_{c p}^{N}[1]+\mathbf{x}_{p 1}^{N}$
- $\mathbf{x}_{2}^{N}\left(w_{c p 1}, w_{c p 2}, w_{p 2}, w_{p 2}^{\prime}, w_{d 2}^{\prime}, w_{d 2}^{\prime \prime}\right)=\underline{\mathbf{x}}_{c p}^{N}[2]+\mathbf{x}_{p 1}^{N}+\mathbf{x}_{d 2}^{N}$
- Decoding: receiver j looks for a unique message tuple such that

$$
\left(\mathbf{y}_{j}^{N}, \mathbf{u}_{j}^{N}\left(\hat{\widetilde{w}}_{c p j}\right), \mathbf{x}_{p j}^{N}\left(\hat{w}_{p j}, \hat{w}_{p j}^{\prime}\right)\right) \in T_{\epsilon}^{(N)}
$$

- Choice of codebook parameters for ensuring secrecy
- Non-cooperative private message at transmitter 1
- $R_{p 1}^{\prime}=I\left(\mathbf{x}_{\rho 1} ; \mathbf{y}_{2} \mid \mathbf{x}_{\rho 2}, \mathbf{u}_{2}\right)$
- $R_{d 2}^{\prime}=I\left(\mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{x}_{\rho 1}, \mathbf{x}_{\rho 2}, \mathbf{u}_{2}\right)$
- Non-cooperative private message at transmitter 2
- $R_{p 2}^{\prime}=I\left(\mathbf{x}_{p 2} ; \mathbf{y}_{1} \mid \mathbf{x}_{p 1}, \mathbf{u}_{1}\right)$
- $R_{d 2}^{\prime \prime}=I\left(\mathbf{x}_{d 2} ; \mathbf{y}_{1} \mid \mathbf{x}_{\rho 1}, \mathbf{x}_{\rho 2}, \mathbf{u}_{1}\right)$
- Chosen such that interference caused by the unintended cooperative private part is canceled
- Advantage
- Eliminates interference
- Ensures secrecy for the cooperative part

$$
\begin{aligned}
& \underline{\mathbf{x}}_{c p}=\mathbf{w}_{1 z} \underline{v}_{1 z}+\mathbf{w}_{2 z} \underline{v}_{2 z} \\
& \mathbf{u}_{1}=\left[\begin{array}{ll}
h_{d} & h_{c}
\end{array}\right] \underline{v}_{1 z} \mathbf{w}_{1 z}, \text { and } \mathbf{u}_{2}=\left[\begin{array}{ll}
h_{c} & h_{d}
\end{array}\right] \underline{v}_{2 z} \mathbf{w}_{2 z}
\end{aligned}
$$

where

- $\underline{v}_{1 z} \triangleq\left[\begin{array}{ll}h_{d} & -h_{c}\end{array}\right]^{T}$
- $\underline{v}_{2 z} \triangleq\left[\begin{array}{cc}-h_{c} & h_{d}\end{array}\right]^{T}$
- $\mathbf{w}_{1 z}$ and $\mathbf{w}_{2 z}$: independent Gaussian with variance $\sigma_{1 z}^{2}$ and $\sigma_{2 z}^{2}$, respectively

$$
\underline{\mathbf{x}}_{c p}=\mathbf{w}_{1 z}\left[\begin{array}{l}
h_{d} \\
-h_{c}
\end{array}\right]+\mathbf{w}_{2 z}\left[\begin{array}{l}
-h_{c} \\
h_{d}
\end{array}\right]
$$

- Encoded message at transmitter 1

$$
\begin{aligned}
\mathbf{x}_{1} & =\underline{\mathbf{x}}_{c p}[1]+x_{p 1} \\
& =h_{d} \mathbf{w}_{1 z}-h_{c} \mathbf{w}_{2 z}+x_{p 1}
\end{aligned}
$$

- Encoded message at transmitter 2

$$
\begin{aligned}
\mathbf{x}_{2} & =\underline{\mathbf{x}}_{c p}[2]+x_{p 2}+x_{d 2} \\
& =h_{d} \mathbf{w}_{2 z}-h_{c} \mathbf{w}_{1 z}+x_{p 2}+x_{d 2}
\end{aligned}
$$

- Output at receiver 1

$$
\begin{aligned}
y_{1} & =h_{d} x_{1}+h_{c} x_{2}+z_{1} \\
& =\underbrace{\left(h_{d}^{2}-h_{c}^{2}\right) w_{1 z}}_{u_{1}}+h_{d} x_{p 1}+h_{c} x_{p 2}+h_{c} x_{d 2}+z_{1}
\end{aligned}
$$

Achievable Secrecy Rate: Weak/Moderate Intf. Regime

- Achievable scheme
- Transmitter 1: sends non-cooperative private and cooperative private message
- Transmitter 2: sends non-cooperative private and cooperative private message along with dummy message
- Separate decoding: treats the dummy message as noise

Theorem

In the weak/moderate interference regime, the following rate is achievable for the GSIC with limited-rate transmitter cooperation and secrecy constraints at the receivers:

$$
\begin{aligned}
& R_{1}+R_{p 1}^{\prime} \leq I\left(\mathbf{u}_{1}, \mathbf{x}_{p 1} ; \mathbf{y}_{1}\right) \\
& R_{1}+R_{p 1}^{\prime} \leq I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{1} \mid \mathbf{u}_{1}\right)+\min \left\{C, I\left(\mathbf{u}_{1} ; \mathbf{y}_{1} \mid \mathbf{x}_{p 1}\right)\right\}
\end{aligned}
$$

where $R_{p 1}^{\prime}=I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{2} \mid \mathbf{x}_{p 2}, \mathbf{u}_{2}\right)$

Corollary

Using the proposed achievable scheme and time-sharing between transmitters, following symmetric secrecy rate is achievable:

$$
\begin{gathered}
R_{s}=\frac{1}{2}\left[R_{i}^{*}(1)+R_{i}^{*}(2)\right], \quad \text { where } i=1,2 \\
R_{1}(1) \leq\left\{\begin{array}{l}
0.5 \log \left(1+\frac{\sigma_{u}^{2}+h_{d}^{2} P_{p 1}}{1+h_{c}^{2} P_{d 2}+h_{c}^{2} P_{p 2}}\right)-R_{p 1}^{\prime}, \\
0.5 \log \left(1+\frac{C_{d}^{2} P_{p 1}}{1+h_{c}^{2} P_{d 2}+h_{c}^{2} P_{p 2}}\right) \\
\quad+\min \left\{C, 0.5 \log \left(1+\frac{\sigma_{u}^{2}}{1+h_{c}^{2} P_{d 2}+h_{c}^{2} P_{p 2}}\right)\right\}-R_{p 1}^{\prime}
\end{array}\right.
\end{gathered}
$$

where $R_{p 1}^{\prime}=0.5 \log \left(1+\frac{h_{c}^{2} P_{p 1}}{1+h_{d}^{2} P_{d 2}}\right), \sigma_{u}^{2} \triangleq\left(h_{d}^{2}-h_{c}^{2}\right)^{2} \sigma_{z}^{2}$, $\sigma_{z}^{2} \triangleq \frac{\theta_{1}}{\theta_{1}+\theta_{2}} \frac{P_{1}}{h_{d}^{2}+h_{c}^{2}}, P_{p 1} \triangleq \frac{\theta_{2}}{\theta_{1}+\theta_{2}} P_{1}, P_{i} \triangleq \beta P(i=1,2)$ and $0 \leq\left(\theta_{i}, \beta\right) \leq 1$.

Achievable Secrecy Rate: High/Very High Intf. Regime

- Achievable scheme
- Transmitter 1: sends non-cooperative private and cooperative private message
- Transmitter 2: sends cooperative private and dummy message
- Dummy message: transmitter chooses the codeword randomly
- Dummy message: not possible to ensure secrecy for the non-cooperative message
- Decoding:
- Receiver 1: $\left(\mathbf{y}_{1}^{N}, \mathbf{u}_{1}^{N}\left(\hat{\tilde{w}}_{c p 1}\right), \mathbf{x}_{p 1}^{N}\left(\hat{w}_{p 1}, \hat{w}_{p 1}^{\prime}\right), \mathbf{x}_{d 2}^{N}\left(\hat{w}_{d 2}\right)\right) \in T_{\epsilon}^{N}$
- Receiver 2: $\left(\mathbf{y}_{2}^{N}, \mathbf{u}_{2}^{N}\left(\hat{\tilde{w}}_{c p 2}\right)\right) \in T_{\epsilon}^{N}$

Theorem

In the high/very high interference regime, the following rate is achievable for the GSIC

$$
\begin{aligned}
& R_{1}+R_{p 1}^{\prime} \leq I\left(\mathbf{u}_{1}, \mathbf{x}_{p 1} ; \mathbf{y}_{1} \mid \mathbf{x}_{d 2}\right) \\
& R_{1}+R_{p 1}^{\prime} \leq I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{1} \mid \mathbf{u}_{1}, \mathbf{x}_{d 2}\right)+\min \left\{I\left(\mathbf{u}_{1} ; \mathbf{y}_{1} \mid \mathbf{x}_{p 1}, \mathbf{x}_{d 2}\right), C\right\} \\
& R_{1}+R_{p 1}^{\prime}+ \\
& \quad+R_{d 2} \leq \min \left[I\left(\mathbf{u}_{1}, \mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{1}\right), I\left(\mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{1} \mid \mathbf{u}_{1}\right)\right. \\
& \left.\quad+\min \left\{I\left(\mathbf{u}_{1} ; \mathbf{y}_{1} \mid \mathbf{x}_{p 1}, \mathbf{x}_{d 2}\right), C\right\}\right] \\
& R_{1}+R_{p 1}^{\prime}+R_{d 2} \leq I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{1} \mid \mathbf{u}_{1}, \mathbf{x}_{d 2}\right)+I\left(\mathbf{u}_{1}, \mathbf{x}_{d 2} ; \mathbf{y}_{1} \mid \mathbf{x}_{p 1}\right) \\
& R_{1}+R_{p 1}^{\prime}+2 R_{d 2} \leq I\left(\mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{1} \mid \mathbf{u}_{1}\right)+I\left(\mathbf{u}_{1}, \mathbf{x}_{d 2} ; \mathbf{y}_{1} \mid \mathbf{x}_{p 1}\right) \\
& R_{2} \leq \min \left\{I\left(\mathbf{u}_{2} ; \mathbf{y}_{2}\right), C\right\} \\
& R_{d 2} \leq I\left(\mathbf{x}_{d 2} ; \mathbf{y}_{1} \mid \mathbf{u}_{1}, \mathbf{x}_{p 1}\right)
\end{aligned}
$$

where $R_{1} \triangleq R_{p 1}+R_{c p 1}, R_{2} \triangleq R_{c p 2}$ and $R_{p 1}^{\prime}$ and $R_{d 2}$ are set as $I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{2} \mid \mathbf{u}_{2}\right)$ and $I\left(\mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{x}_{p 1}, \mathbf{u}_{2}\right)$, respectively.

- Outer bounds: using the intuition gained from deterministic model

Figure: GSIC with $C=0, P=100$ and $h_{d}=1$.

- In the legend
- HY: X. He and A. Yener, A new outer bound for the Gaussian interference channel with confidential messages, CISS 2009
- TP: X. Tang, R. Liu, P. Spasojevic, and H. Poor, Interference assisted secret communication, TIT 2011

Comparison among different schemes

Figure: Achievable secrecy rate and outer bound: $P=20 \mathrm{~dB}, \mathrm{C}=0.2$

Rate against α

Figure: GSIC with $P=100, h_{d}=1$: (a) $C=0$, (b) $C=1$ and (c) $C=10$.

- Need to show: $H\left(W_{p 1} \mid \mathbf{y}_{2}^{N}\right) \geq N\left[R_{p 1}-\epsilon_{s}\right]$

$$
\begin{aligned}
& H\left(W_{p 1} \mid \mathbf{y}_{2}^{N}\right) \geq H\left(W_{p 1} \mid \mathbf{y}_{2}^{N}, \mathbf{x}_{p 2}^{N}, \mathbf{u}_{2}^{N}, W_{d 2}^{\prime \prime}\right) \\
& \geq N[\left.R_{p 1}+R_{p 1}^{\prime}+R_{d 2}^{\prime}\right]-I\left(\mathbf{x}_{p 1}^{N}, \mathbf{x}_{d 2}^{N} ; \mathbf{y}_{2}^{N} \mid \mathbf{u}_{2}^{N}, \mathbf{x}_{p 2}^{N}\right) \\
& \quad-H\left(\mathbf{x}_{p 1}^{N}, \mathbf{x}_{d 2}^{N} \mid \mathbf{y}_{2}^{N}, \mathbf{u}_{2}^{N}, \mathbf{x}_{p 2}^{N}, W_{p 1}, W_{d 2}^{\prime \prime}\right)
\end{aligned}
$$

- It can be shown:

$$
I\left(\mathbf{x}_{p 1}^{N}, \mathbf{x}_{d 2}^{N} ; \mathbf{y}_{2}^{N} \mid \mathbf{u}_{2}^{N}, \mathbf{x}_{p 2}^{N}\right) \leq N I\left(\mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{u}_{2}, \mathbf{x}_{p 2}\right)+N \epsilon^{\prime}
$$

- $H\left(\mathbf{x}_{p 1}^{N}, \mathbf{x}_{d 2}^{N} \mid \mathbf{y}_{2}^{N}, \mathbf{u}_{2}^{N}, \mathbf{x}_{p 2}^{N}, W_{p 1}, W_{d 2}^{\prime \prime}\right) \leq N \delta_{1}$ provided

$$
\begin{aligned}
& R_{P 1}^{\prime} \leq I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{2} \mid \mathbf{x}_{d 2}, \mathbf{u}_{2}, \mathbf{x}_{p 2}\right) \\
& R_{d 2}^{\prime} \leq I\left(\mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{x}_{p 1}, \mathbf{u}_{2}, \mathbf{x}_{p 2}\right) \\
& R_{p 1}^{\prime}+R_{d 2}^{\prime} \leq I\left(\mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{u}_{2}, \mathbf{x}_{p 2}\right)
\end{aligned}
$$

- Equivocation becomes
$H\left(W_{p 1} \mid \mathbf{y}_{2}^{N}\right) \geq N\left[R_{p 1}+R_{p 1}^{\prime}+R_{d 2}^{\prime}-I\left(\mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{u}_{2}, \mathbf{x}_{p 2}\right)-\epsilon_{1}\right]$
- Choose $R_{p 1}^{\prime}+R_{d 2}^{\prime}=I\left(\mathbf{x}_{p 1}, \mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{u}_{2}, \mathbf{x}_{p 2}\right)$ for ensuring secrecy
- Hence, $R_{p 1}^{\prime}=I\left(\mathbf{x}_{p 1} ; \mathbf{y}_{2} \mid \mathbf{x}_{p 2}, \mathbf{u}_{2}\right)$ and $R_{d 2}^{\prime}=I\left(\mathbf{x}_{d 2} ; \mathbf{y}_{2} \mid \mathbf{x}_{p 1}, \mathbf{x}_{p 2}, \mathbf{u}_{2}\right)$

