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Shannon’s cipher system

Secret key (K )

Known to Alice and Bob, but not known to Eve

K is independent of M



Encoding and decoding

Encoder

e : M×K → X

Decoder

d : X ×K → M

(e, d): coding scheme

Eve’s knowledge

No knowledge about key

Assume to know e and d



Secrecy measure

Equivocation: H(M|X )

Perfect secrecy

A coding scheme is said to achieve perfect secrecy if

H(M|X ) = H(M) ⇔ I (M;X ) = 0

Codewords X are statistically independent of the message M



Proposition

If a coding scheme for Shannon’s cipher system achieves perfect
secrecy, then

H(K ) ≥ H(M)

Necessary to use at least one secret-key bit for each message
bit



Secure communication over noisy channel

Shannon’s result

Key length should be as large as the message

Perfect secrecy is a stringent measure

What happens when Eve listens through a different channel as
compared to Bob

Different secrecy measure is used



Weak and strong secrecy

Exact statistical independence between message M and Eve’s
observations Z n → asymptotic statistical independence

lim
n→∞

d(PMZn ,PMPZn) = 0

d(., .): Kullback-Leibler divergence

lim
n→∞

I (M,Z n) = 0 (Strong secrecy condition)

Weak secrecy condition

lim
n→∞

1

n
I (M,Z n) = 0



Wiretap channel

Secrecy capacity was originally introduced by Wyner



Theorem

The secrecy capacity of a DWTC (X , pZ |Y pY |X ,Y,Z) is

CDWTC
s = max

pX
[I (X ;Y )− I (X ;Z )]

If Y = Z , then CDWTC
s = 0

CDWTC
s ≥ Cm − Ce

Stochastic encoding is crucial to enable secure
communication1

1There is no point in considering stochastic decoder



Role of noise in security

Wiretap channel

Communications are inherently rate limited

One-way

When secrecy capacity is zero

Lack of any physical advantage over the eavesdropper
or

Restrictions imposed on the communication schemes

Goal

How much secrecy one can extract from thee noise itself in the
form of a secret key?



Role of noise in security

Secret key agreement

The legitimate parties (Alice and Bob) and eavesdropper (Eve)
observes realization of correlated RVs

Legitimate parties attempt to agree on a secret key to the
eavesdropper

Standard models

Source model

Channel model



Source model

Can exchange message over noiseless, two-way and
authenticated channel

Two-way channel is public

Uncontrollable external source



Key-distillation strategy

A (2nR , n) key-distillation strategy Sn for a source model with
DMS (XYZ, pXYZ ) consists of

2

Key alphabet K = [1, 2nR]

Alphabet A used by Alice to communicate over the channel

Source of local randomness for Alice (RX , pRX
)

r : number of rounds of communications

r encoding functions fi : X
n × Bi−1 ×RX → A for i ∈ [1, r ]

Key-distillation function κa : X
n × Br ×RX → K

2Only defined for Alice



Performance measures

Average probability of error

Pe(Sn) = P(K 6= K̂ |Sn)

Information leakage to the eavesdropper

L(Sn) = I (K ;Z nArB r |Sn)

Uniformity of the key

U(Sn) = log⌈2nR⌉ − H(K |Sn)



Secret-key capacity

A weak secret-key rate R is achievable if there exists a
sequence of (2nR , n) key-distillation strategies {Sn}n≥1 s.t.

lim
n→∞

Pe(Sn) = 0 (Reliability)

lim
n→∞

1

n
L(Sn) = 0 (Weak secrecy)

lim
n→∞

1

n
U(Sn) = 0 (Weak uniformity)

Theorem

The weak secret-key capacity of a source model (XYZ, pXYZ )
satisfies

I (X ;Y )−min{I (X ;Z ), I (Y ;Z )}≤CSM
s ≤min{I (X ;Y ), I (X ;Y |Z )}



Comments on secret-key capacity

The lower bound is in general loose

Can be obtained using

Using wiretap code or

Slepian-wolf codes

Above techniques does not give any insight for practical
schemes

Is it possible to handle reliability and secrecy requirements
independently



Sequential key distillation

Randomness sharing: Alice, Bob and Eve observe n

realizations of a DMS (XYZ, pXYZ )

Advantage distillation: Alice and Bob exchange messages
observe the public channel to distill obsn. for which they have
an advantage over Eve

Information reconciliation: Alice and Bob communicate with
each other to agree on a common bit sequence

Privacy amplification: Alice and Bob publicly agree on a
deterministic function and used it to generate a secret key
from the common sequence



Advantage distillation

Suppose Eve has an advantage over both Alice and Bob

I (X ;Y ) < I (X ;Z ) and I (X ;Y ) < I (Y ;Z )

Reverse Eve’s advantage by exchanging messages over the
public channel

Crates a new DMS (X ′Y ′Z ′, pX ′Y ′Z ′) with components X ′,Y ′

and Z ′ = Z nArB r such that

I (X ′;Y ′) ≥ I (X ′;Z ′) or I (X ′;Y ′) ≥ I (Y ′;Z ′)

Performance measure: advantage distillation rate

R(Dn) =
1

n
max[I (X ′;Y ′)− I (X ′;Z ′), I (X ′;Y ′)− I (Y ′;Z ′)]



Information reconciliation

Allow Alice and Bob to agree on a common sequence S

Common message S could be function of

Alice and Bob’s observations

Messages exchanged over the public channel

Can randomize their operations using sources of local
randomness

Reliability performance of a reconciliation protocol

Pe = P(S 6= Ŝ |Rn)



Privacy amplification

Alice and Bob distill a secret key from S



Privacy amplification contd.

Types of functions
Hash function

Can produce significantly different outputs even when their

inputs are quite similar

Extractors

Can output more uniform randomness then is used at the input



Channel model

In the source model, Alice, Bob and Eve cannot control the
external source

What happens if the source is partially controlled by one of
the parties

If Eve controls, the problem is not fully understood

Analysis is somewhat less difficult, when one of the legitimate
parties controls the source

This model is called channel model for secret-key agreement



Theorem

The secret-key capacity CCM
s of a channel model satisfies

max

[

max
pX

{I (X ;Y )− I (X ;Z )},max
pX

{I (X ;Y )− I (Y ;Z )}

]

≤ CCM
s ≤ max

pX
min{I (X ;Y ), I (X ;Y |Z )}


