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The value of redundant measurement in compressed
sensing

Authors:
Victoria Kostina, Marco F. Duarte, Sina Jafarpour, Robert Calderbank

Duke University
Princeton
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Considered quantization of CS measurements
Main contribution is to prove better results on a previous paper

◮ Democracy of measurement matrices: All measurements carry
same weight

◮ Proven using RIP
◮ Uniform sampling with rejection of measurements above a certain

threshold

Main Contributions
◮ Bit budget to specify the rejected measurements
◮ Vector quantization for the non-rejected measurements

It is better to make more measurements and reject in terms of
performance under quantization

◮ Leads to a finer mesh for non-rejected measurements
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Statistical Compressive Sensing of Gaussian Mixture
Models

Authors:
Gushen Yu and Guillerm Sapiro

University of Minnesota, Minneapolis
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Considered sampling of signals that follow a prior distribution
◮ y = Ax , A ∈ RM×N , M << N, x ∼ N (0, S)

Goal is accurate reconstruction on average
◮ Expected MSE

Conditions on measurement matrix
◮ RIP in expectation, Expected NSP etc.

Linear filtering decoders for gaussian signal models
◮ Average mean squared error bounded by best-k term approx. error

KEY Result
◮ O(k) measurements required as compared to O(klog(N/k)) for CS
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Estimation and Dynamic updating of Time varying signals with sparse
variations
Authors: M. Salman Asif, A Charles, J Romberg, and C Rozell
Georgia Tech

ESTIMATING SPARSE MIMO CHANNELS HAVING COMMON
SUPPORT
Authors: Yann Barbotin, A Hormati, S Rangan, M Vetterli
EPFL and Polytechnic Institute of New York

Weighted Compressed Sensing and Rank Minimization
Authors: Samet Oymak, M. Amin Khajehnejad, Babak Hassibi
CalTech
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Consensus-based distributed Total Least Squares
Estimation in Ad Hoc Wireless Sensor Networks

Authors:
Alexander Bertrand and Marc Moonen

KU Leuven, Belgium
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Distributed algorithm to find TLS estimates in WSN
◮ One-hop connectivity
◮ Each node is observing the same underlying vector
◮ Each node knows only a part of measurement matrix

Main issues
◮ Due to consensus constraints (connectivity) the problem is not

separable
◮ TLS is not convex: Equivalent to finding the eigenvector

corresponding to minimum eigenvalue

Solve for the dual problem
◮ That turns out to be separable
◮ Can be solved using sub-gradient methods

Convex relaxations
◮ Not equivalent to the original problem but can be proved to solve

the problem of interest
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Should Penalized Least Squares Regression be Interpreted
as Maximum A Posteriori Estimation?

Authors:
Remi Gribonval

INRIA, Rennes, France Princeton
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Denoising problem: y = x + n. Estimate of x given y?

MAP estimator: arg max p(x |y) and MMSE: E [X |Y = y ],
minimization of expected cost

MAP estimator with a known prior can be expressed as a
penalized/regularized LS

◮ Regularization term: [−logPX (x)] OR

◮ Penalty term, φ(x) can be interpreted as a prior with density
C0exp(−φ(x))

What about MMSE ? Can it be expressed as regularized least
squares

YES

◮ For a given pX (x) a penalty term can be found such that MMSE
estimator is the regularized LS estimator

◮ Then, MMSE can also be interpreted as MAP estimator with prior
ˆpX (x) and this prior can differ from original prior

Applications: computation of MMSE, others ??
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Sensitivity to Basis Mismatch in Compressed Sensing
Yuejie Chi, Louis L. Scharf, Ali Pezeshki A. Robert Calderbank
Princeton, Colorado State Univ, Duke

Sparsity-Cognizant Total Least-Squares for Perturbed Compressive
Sampling
Authors: Hao Zhu, Geert Leus and Georgios B. Giannakis
Univ of Minnesota; Delft, Netherlands

Hidden Relationships: Bayesian Estimation With Partial Knowledge
Authors: Tomer Michaeli and Yonina C. Eldar
Technion
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