Optimal Routing, Power Allocation and Link Activation for Multi-Hop D2D Communication

Sireesha Madabhushi and Govind Ravikumar Gopal

Signal Processing for Communications (SPC) Lab Indian Institute of Science (IISc) Bangalore, India

September 10, 2016

D2D Optimal Multi-hop Routing, Power Allocation, and Link Activation

SPC Lab, IISc

1/28

Introduction

What does D2D mean?

Direct communication between devices without traversing the cellular network

Major challenges in D2D communication

- Interference avoidance/cancellation
- Device discovery
- Resource management
- Mode selection

ヘロト ヘアト ヘビト ヘビト

Our Work

Motivation

- Direct path is not always feasible!
- D2D network may have other high rate data links which are feasible!!

Aim

Maximize throughput between a source-destination pair using a multi-hop path under an interference constraint imposed by the cellular network

Method

Maximization of throughput in two stages

- Optimal route discovery
- Link activation

System Model

- M D2D users and N base stations (BSs)
- Locations of D2D users are known, locations of cellular users are unknown
- Path loss model and Rayleigh fading are considered

Figure: Uplink-inband D2D with M = 3D2D users and N = 1 BS

・ロト ・回ト ・ヨト ・ヨト

The Two Schemes

- Fixed rate scheme: transmit power is allotted so that all D2D links achieve the same target rate
- Fixed outage scheme: each D2D link provides its maximum possible rate at a given outage probability

・ロト ・回ト ・ヨト ・ヨト

Fixed Rate Scheme: Overview

Given:

From cellular network,

- \blacktriangleright Interference threshold at the BS, $\gamma_{\textit{bs}}$
- ▶ Interference outage probability, p_b : $\Pr{\{P_b^{int} \ge \gamma_{bs}\}} \le p_b$

From D2D network,

- SINR threshold at D2D Rx, γ_{th}
- ▶ Data outage probability, p_{d2d} : $Pr{SINR_{tr} \leq \gamma_{th}} \leq p_{d2d}$
- 1. Determine the feasible links according to the constraints above
- 2. Get the rate matrix and apply routing algorithm
- 3. For the throughput-optimal route, apply sequential link activation (SLA) scheme for data transmission

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Link Feasibility

- 1. At D2D Rx d_r , measure P_r^{int} using a power or energy meter
- 2. At D2D Tx d_t , calculate $\forall s \in \{1, \dots, N\}$

$$P_t^{\max} = \arg \max_{P_t} \left[\Pr \left\{ P_t - 10\eta \log \left(D_{tb_s} \right) + 10 \log \left(g_{tb_s} \right) \ge \gamma_{bs} \right\} \le p_b \right]$$
(1)

For Rayleigh fading channels considering the nearest BS, we get,

$$P_t^{\max} = 10 \log \left(-\frac{10^{\frac{\gamma_{bs}}{10}} (D_{tb_n})^{\eta}}{2\sigma^2 \ln(p_b)} \right)$$
(2)

3. For each possible D2D Tx and D2D Rx, calculate

$$P_{tr}^{\min} = \arg\min_{P_{tr}} \left[\Pr\left\{ P_{tr} - 10\eta \log\left(D_{tr}\right) + 10 \log\left(g_{tr}\right) - P_{r}^{\inf} \le \gamma_{th} \right\} \le p_{d2d} \right]$$
(3)

For Rayleigh fading channels,

$$P_{tr}^{\min} = 10 \log \left(-\frac{10^{\frac{\gamma_{th} + P_r^{\min}}{10}} (D_{tr})^{\eta}}{2\sigma^2 \ln(1 - p_{d2d})} \right)$$
(4)

4. $P_{tr}^{\min} \leq P_t^{\max} \Rightarrow d_t \longrightarrow d_r$ feasible

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Routing

Algorithm

- 1. Construct rate matrix $\mathbf{R}_{M \times M}$ with $\mathbf{R}_{ij} = (1 p_{ij}^{\text{out}}) \log_2(1 + \gamma_{th})$. Here, $\mathbf{R}_{ii} = 0 \ \forall i$ and $\mathbf{R}_{ij} = 0$ when $d_i \longrightarrow d_j$ is infeasible $p_{ij}^{\text{out}} = 1 - \exp(-\frac{10^{0.1(P_j^{\text{int}} + 10\eta \log(D_{ij}) + \gamma_{th} - P_i^{\text{max}})}{2\sigma^2})$
- 2. Use Dijkstra's algorithm from d_S to d_D with link weights between nodes as $\frac{1}{\mathbf{R}_{ii}}$
- 3. Find route which minimizes $\sum \frac{1}{R_{ii}}$

End-to-end throughput

$$R_{\rm eff} = \left(\sum \frac{1}{\mathbf{R}_{ij}}\right)^{-1} \tag{5}$$

Slot-based Link Feasibility

Notation:

- Link in the throughput-optimal route is $\mathcal{L}_{l,l+1}$, where $l \in \{0, 1, \ldots, K\}$, 0th node is source and (K + 1)th node is destination
- Channel gain vector in time slot m, $\mathcal{G} = [g_{S1}(m), g_{12}(m), \dots, g_{K-1,K}(m), g_{KD}(m)]$

Link feasibility is determined in every time slot for different channel instantiations.

- 1. Calculate aggregate interference and noise power, P_i^{int}
- 2. D2D nodes transmit at P_i^{max} . For each Tx and Rx pair, find the required power to meet the target SINR at destination j

$$P_{ij}^{\rm req}(m) = P_j^{\rm int} + \gamma_{th} + 10\eta \log(D_{ij}) - 10 \log(g_{ij}(m))$$
 (6)

3. Declare the link $d_i \longrightarrow d_j$ feasible if $P_i^{\text{max}} \ge P_{ii}^{\text{req}}(m)$

(ロ) (同) (E) (E) (E) (O)(O)

Sequential Link Activation (SLA)

- 1. All the links in the route are initially assumed to be available, *i.e.*, can be activated
- 2. In the first time slot (m = 1), select the first link \mathcal{L}_{S1}
- 3. Check if the selected link is feasible
 - If the link is feasible, activate it and select the next link in the route for the next time slot
 - Otherwise, wait for the next time slot and select the same link
- 4. Repeat step 3 until the source has no more packets to send

Note: Source is assumed to transmit a fresh packet only after the destination receives the previous packet

(ロ) (四) (E) (E) (E)

Analysis

Delay across each link

$$w_{ij}^{\text{SLA}} = (1 - p_{ij}^{\text{out,FR}}) + 2p_{ij}^{\text{out,FR}} (1 - p_{ij}^{\text{out,FR}}) + 3(p_{ij}^{\text{out,FR}})^2 (1 - p_{ij}^{\text{out,FR}}) + \cdots$$
(7)

$$w_{ij}^{\mathsf{SLA}} = \frac{1}{1 - p_{ij}^{\mathsf{out},\mathsf{FR}}} \tag{8}$$

Throughput across each link

$$\tau_{ij}^{\mathsf{SLA}} = 1 - p_{ij}^{\mathsf{out},\mathsf{FR}} \tag{9}$$

Total delay is sum of individual delays across all the K + 1 links.

$$W^{\mathsf{SLA}} = \sum_{i,j} \frac{1}{1 - p_{ij}^{\mathsf{out},\mathsf{FR}}}$$
(10)

System throughput

$$\mathcal{T}^{\mathsf{SLA}} = \frac{\mathsf{HM}(\tau_{S1}^{\mathsf{SLA}}, \tau_{12}^{\mathsf{SLA}}, \cdots, \tau_{KD}^{\mathsf{SLA}})}{K+1} \tag{11}$$

Opportunistic Link Activation (OLA)

- Calculate slot based link feasibility using data outage constraint
- Apply buffer outage conditions corresponding to the feasible links obtained above
- Choose one of the feasible (according to data and buffer outages)links uniformly randomly at each time slot

1			
I _{min}	l _{max}	Condition	Action
$\geq I_{th}$			Retain $\mathcal{L}_{k,k+1} = 1$, $orall I_k = I_{max}$
	$\leq I_{th}$		Retain $\mathcal{L}_{k-1,k}=1$, $orall I_k=I_{min}$
$\leq I_{th}$	$\geq I_{th}$	\mid $I_{max} - I_{th} \mid > \mid I_{min} - I_{th} \mid$	Retain $\mathcal{L}_{k,k+1} = 1$, $orall I_k = I_{max}$
$\leq I_{th}$	$\geq I_{th}$	\mid I _{max} - I _{th} \mid < \mid I _{min} - I _{th} \mid	Retain $\mathcal{L}_{k-1,k}=1$, $orall I_k=I_{min}$
			Retain $\mathcal{L}_{k-1,k} = 1$, $\forall I_k = I_{min}$
$\leq I_{th}$	$\geq I_{th}$	$\mid I_{max} - I_{th} \mid = \mid I_{min} - I_{th} \mid$	$\mathcal{L}_{k,k+1}=$ 1, $orall l_k=l_{max}$

Table: Decision table for Step 4(c), set all other $\mathcal{L}_{ij} = 0$

・ロト ・回ト ・ヨト ・ヨト

Opportunistic Link Activation (OLA)

1. Set buffers of all the relay nodes to be empty, *i.e.*,

$$l_k = 0, \forall k = 1, 2, \ldots, K$$

- 2. In each time slot, initially all the links are assumed to be feasible. $\mathcal{L} = [1,1,\ldots,1,1]$
- 3. Find feasible links according to the data outage constraint
 - (a) Do slot based link feasibility analysis and set $\mathcal{L}_{\it ij}=0$ when the link is in outage
 - (b) For $1 \leq k \leq K$,
 - if *I_k* = *L*, set *L_{k-1,k}* = 0
 if *I_k* = 0, set *L_{k,k+1}* = 0
- 4. Set $I_{th} = \frac{L}{2}$, $\forall k$. Considering only the feasible links obtained from above, do the following:
 - (a) Find $I_{min} = \min \{I_k\}$
 - (b) Find $I_{max} = \max\{I_k\}$
 - (c) Follow the actions given in Table 1 to obtain an updated ${\cal L}$
- 5. Choose one of the available links, *i.e.*, with $\mathcal{L}_{ij} = 1$, in a uniform random manner
- 6. Repeat the process from Step 2 until the source has no more packets to send

SPC Lab, IISc

Analysis

- $1. \ \mbox{Calculate transition probabilities for the buffer states}$
- 2. Obtain the state transition matrix and stationary probability vector
- 3. Arrive at outage probabilities of the links
- 4. Calculate delay and throughput using Little's law

・ロト ・回ト ・ヨト ・ヨト

Tuple of buffer lengths can be the states of a DTMC

$$s_n \triangleq (l_1, l_2, \dots, l_k), \qquad 1 \le n \le (L+1)^K \tag{12}$$

State transition matrix $\mathbf{A} \in \mathbb{R}^{(L+1)^{\kappa} \times (L+1)^{\kappa}}$

Only one step transitions are allowed as only one link can be active in a time slot

 Φ_n - set of all links that can be activated when DTMC is in state s_n α_n - set of feasible links when DTMC is in state s_n

$$\mathbf{A}_{mn} = \sum_{\alpha_n \subseteq \Phi_n} \Pr\{\alpha_n\} \Pr\{s_n \to s_m \mid \alpha_n\}$$

$$\mathbf{A}_{nn} = \prod_{\mathcal{L}_{ij} \in \Phi_n} p_{out, ij}$$
(13)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

$$\boldsymbol{\pi} = (\mathbf{I} - \mathbf{A} + \mathbf{B})^{-1} \mathbf{b}$$
(14)

where π is the stationary probability vector $\pi \in (L+1)^K \times 1$, $\mathbf{b} = [1, 1, \dots, 1]^T$ and $\mathbf{b} \in (L+1)^K \times 1$, \mathbf{I} is the identity matrix and $\mathbf{I} \in (L+1)^K \times (L+1)^K$, $\mathbf{B}_{mn} = 1$, $\forall m, n$, such that $1 \leq m, n \leq (L+1)^K$.

System outage probability

$$p_{out}^{\text{OLA}} = \sum_{n=1}^{(L+1)^{\kappa}} \mathbf{A}_{nn} \pi_n = \text{diag}(\mathbf{A})^{T} \boldsymbol{\pi}$$
(15)

SPC Lab, IISc

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Average queuing length at d_S , $\mathbb{E}[q_S] = 1 - p_{S \rightarrow 1}$

$$p_{S \to 1} = p_{1 \to 2} = \ldots = p_{i \to j} = \ldots = p_{K-1 \to K} = p_{K \to D}$$
 (16)

where p_{ij} is the probability that the link \mathcal{L}_{ij} is selected for data transmission.

$$p_{out}^{OLA} + p_{S \to 1} + p_{1 \to 2} + \dots + p_{K \to D} = 1$$

$$\Rightarrow \qquad \qquad p_{out}^{OLA} + (K+1)p_{send} = 1 \qquad (17)$$

$$p_{send} = \frac{1 - p_{out}^{OLA}}{K+1}$$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

. ->

Average queueing length at source node, d_S

$$\mathbb{E}[q_S] = 1 - p_{send}$$

$$= \frac{K + p_{out}^{OLA}}{K + 1}$$
(18)

Throughput for link \mathcal{L}_{S1} is:

$$\tau_{S} = p_{S \to 1}$$

$$= p_{send}$$

$$= \frac{1 - p_{out}^{OLA}}{K + 1}$$
(19)

Therefore, we can obtain the average delay at the source node as:

$$w_{S}^{OLA} = \frac{\mathbb{E}[q_{S}]}{\tau_{S}}$$

$$= \frac{K + p_{out}^{OLA}}{1 - p_{out}^{OLA}}$$
(20)

Expected queue length at the relay node d_k

$$\mathbb{E}[q_k] = \sum_{n=1}^{(L+1)^{\kappa}} \pi_n l_k^{(s_n)}$$
(21)

Throughput of the link from d_k to d_{k+1}

$$\tau_{k} = \rho_{k \to k+1}$$

$$= \rho_{send}$$

$$= \frac{1 - \rho_{out}^{OLA}}{K + 1}$$
(22)

Delay at each relay node d_k using Little's Law

$$w_{k}^{\text{OLA}} = \frac{\mathbb{E}[q_{k}]}{t_{k}}$$
$$= \frac{K+1}{1-\rho_{out}^{\text{OLA}}} \sum_{n=1}^{(L+1)^{K}} \pi_{n} l_{k}^{(s_{n})}$$
(23)

(ロ) (四) (E) (E) (E)

Total delay

$$W^{OLA} = w_{S}^{OLA} + \sum_{k=1}^{K} w_{k}^{OLA}$$

$$= \frac{K + p_{out}^{OLA}}{1 - p_{out}^{OLA}} + \frac{K + 1}{1 - p_{out}^{OLA}} \sum_{k=1}^{K} \sum_{n=1}^{(L+1)^{K}} \pi_{n} I_{k}^{(s_{n})}$$
(24)

System throughput

$$\mathcal{T}^{\mathsf{OLA}} = \frac{\tau_i}{K+1} = \frac{1 - p_{out}^{\mathsf{OLA}}}{(K+1)}$$
(25)

SPC Lab, IISc

・ロト ・四ト ・ヨト ・ヨト

SPC Lab, IISc

Fixed Outage Scheme: Overview

Given:

From cellular network,

- \blacktriangleright Interference threshold at the BS, $\gamma_{\textit{bs}}$
- ▶ Interference outage probability, p_b : $\Pr{\{P_b^{int} \ge \gamma_{bs}\}} \le p_b$

From D2D network,

- ▶ Data outage probability, p_{d2d} : $Pr\{log_2(1 + SINR_{tr}) \le R_{tr}\} \le p_{d2d}$
- 1. Calculate the highest possible link rates for the data outage probability, p_{d2d}
- 2. Apply routing algorithm on the rate matrix
- 3. For the throughput-optimal route, apply modified sequential link activation (M-SLA) scheme for data transmission

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Rate matrix calculation

- 1. At D2D Rx d_r , measure P_r^{int} (from power or energy meter) and for all Tx-Rx pairs, calculate $SINR_{tr}$
- 2. At D2D Tx d_t , calculate $\forall s \in \{1, \dots, N\}$

$$P_{t}^{\max} = \arg \max_{P_{t}} \left[\Pr \left\{ P_{t} - 10\eta \log \left(D_{tb_{s}} \right) + 10 \log \left(g_{tb_{s}} \right) < \gamma_{bs} \right\} \ge (1 - p_{b}) \right]$$
(26)

For Rayleigh fading channel considering the nearest BS, we get,

$$P_t^{\max} = 10 \log \left(-\frac{10^{\frac{\gamma_{bs}}{10}} (D_{tb_n})^{\eta}}{2\sigma^2 \ln(p_b)} \right)$$
(27)

- 3. For each possible Tx and Rx pair, calculate
 - $R_{tr}^{\max} = \arg \max_{R_{tr}} \left[\Pr \left\{ \log_2 \left(1 + SINR_{tr} \right) \ge R_{tr} \right\} \ge (1 p_{d2d}) \right] \quad (28)$

For Rayleigh fading channel,

$$R_{tr}^{\max} = \log_2 \left(1 - \frac{2\sigma^2 \ln(1 - p_{d2d})}{10^{\frac{p_{tr}^{\min} - p_t^{\max}}{10}} (D_{tr})^{\eta}} \right)$$
(29)

Routing

Algorithm

- 1. Construct rate matrix $\mathbf{R}_{M \times M}$ with R_{ij}^{\max} . Here, $\mathbf{R}_{ii} = 0 \ \forall i$
- 2. Use Dijkstra's algorithm from d_S to d_D with link weights between nodes as $\frac{1}{R_{ii}}$
- 3. Find route which minimizes $\sum \frac{1}{R_{ii}}$

End-to-end throughput

$$R_{\rm eff} = \left(\sum \frac{1}{\mathbf{R}_{ij}}\right)^{-1} \tag{30}$$

・ロ・ ・四・ ・ヨ・ ・ ヨ・

Modified Sequential Link Activation (M-SLA)

Similar to SLA except:

- If the selected link is feasible, activate it
 - If the link \mathcal{L}_{S1} has been activated for $\frac{1}{R_{S1}}$ times, select the next link in the route
 - Otherwise, select the same link for the next time slot too
- If the link is infeasible (outage), then wait for the next time slot and select the same link

26 / 28

æ

-

Conclusion

- Proposed two schemes for D2D communication system design
- Opportunistic link activation scheme which improves the end-to-end throughput
- Closed form expressions for throughput and delay

・ロト ・回ト ・ヨト ・ヨト

Future Work

- Incorporate chase combining at the D2D Rx
- Improve OLA by sorting the buffer lengths at the relay nodes
- Routing when D2D nodes are moving at a high speed

・ロ・ ・四・ ・ヨ・ ・ ヨ・