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Sparse Matrix Recovery Problem
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» Goal: Recover distributed-sparse matrix X from Y = AXBT

» Distributed sparsity: Every row and every column of X has
only a few non-zeros



Motivation

1. Source localization: basis expansion model approach in brain
using EEG signals

2. Covariance matrices: Only a few variables are correlated to
each other

3. Multi-dimensional signals: Natural images are sparse in the
gradient domain



Why Distributed Sparsity?

"Arrow" matrix Distributed sparse matrix

» Arrow matrix: Impossible to recover X even if non-zero
pattern is known

» Matrix with v € ker (A) added to first column of X is also a
potential solution

» Our focus: Size of the sketch Y to recover distributed sparse
matrix X



Definition: Distributed Sparsity

» Q C [p] x [p] is d-distributed subset if for all k € [p]

1. (k. k) eQ
2 |{(k.i)eQ}| <d
3 |{(i,k)eQl|<d

» X is d-distributed sparse matrix if

supp (X) C Q

» # off-diagonal nonzeros of every row and column < d —1



Convex Relaxation using

» Solve underdetermined linear system
Y = AXBT
» Known matrices:A, B € R™*P with m < p
» Using tensor product notations
vec(Y) = B ® Avec(X)
» /i based recovery:
minvec (X)];

subjected to Y = AXBT



Results from Compressed Sensing

» Guarantees on solution based on restricted isometric properties
of BRA
6,(A) £inf |5:(1—3d(A))Ix[l3 < [lAx[|3 < (1 - 5(A)) [Ix]3
Ix[lo < 1]
» RIC of B ® A is higher than that of A and B

» Proof works when X is very sparse: sparsity k = ©(1)

» Our focus: Guarantees on recovery when k = O(p) and X has
distributed sparsity



Uniformly Random ¢-Left Regular Bipartite Ensemble

» Bipartite graph: G = ([p], [m], E)

» Uniform random J-left regular bipartite graph:
Vi € [p] one chooses § vertices uniformly and independently at
random (with replacement) from [m)]

» Uniformly random §-left regular bipartite ensemble:
Adjacency matrix of a uniform random J-left regular bipartite

graph



Main Result

i based recovery:
X* = arg min |lvec (X)|I;
X
subjected to Y = AXBT

Under following conditions:
» X : d-distributed p x p sparse matrix

» A B < {0,1}™Pare drawn independently and uniformly from
the d-random bipartite ensemble

> 0 =0O(logp)
there exists a ¢ > 0 such that X* = X with probability exceeding
1— p~¢ when
m = O(y/dplog p)

» Furthermore, this holds even if A = B.



Implications

» Constraint of distributed sparsity need not be factored into the
optimization problem

X* = arg min |jvec (X)||, subjected toY = AXBT
X

» Near optimal bound m = O(\/dplog p)
» logarithm away from the trivial lower bound O(+/dp)



Distributed Matrix + Perturbation

Under following conditions:
» X : arbitrary p X p matrix

» A B c {0,1}""Pare drawn independently and uniformly from
the d-random bipartite ensemble

> 6 =0O(logp)
there exists a ¢ > 0 and ¢ € (0,1/4) such that

2 —4e

| X* — X, < min
1 —4e \{Xq:d—distributed}

rXXﬂQ

with probability exceeding 1 — p~¢ when m = O(y/dplog p)
» Furthermore, this holds even if A = B.



Rectangular Case

Problem: Y = AXBT

» Rectangular sparse matrix: X € RP1*P2
» Square measurement matrix: Y € R™*™

v

v

Extend previous theorem by padding zeros to sparse matrix to
make it square

The size of sketch is

v

m = O(+/dplog p)

> p=max{p1,p2}
» d = max {row degree, column degree}

v

Weak result when py =1



Noisy Measurements

» Model:
Y = AXBT +w

where W ; ~iid zero mean Gaussian noise

» Optimization problem
2
X* = argmin H Y - AXBTH2 + A [Jvec (X)),
X

» Analysis is an open problem!



Summary

» Notion of distributed sparsity

» A distributed sparse matrix can be recovered from linear model
Y = AXBTvia /; minimization when sensing matrices are
suitable random binary matrices

» Recovery procedure is robust to distributed matrix plus a
perturbation



