Sketching Sparse Matrices

Geethu Joseph
SPC Lab, IISc

September 12, 2015

Paper Reviewed

- Title: Sketching Sparse Matrices, Covariances, and Graphs via Tensor Products
- Authors: Gautam Dasarathy, Parikshit Shah, Badri Narayan Bhaskar, and Robert D. Nowak
- Publication date: March 2015
- Journal name: IEEE Transactions on Information Theory, vol. 61, no. 3, pp. 1373-1388

Sparse Matrix Recovery Problem

- Goal: Recover distributed-sparse matrix \boldsymbol{X} from $\boldsymbol{Y}=\boldsymbol{A X} \boldsymbol{B}^{\top}$
- Distributed sparsity: Every row and every column of \boldsymbol{X} has only a few non-zeros

Motivation

1. Source localization: basis expansion model approach in brain using EEG signals
2. Covariance matrices: Only a few variables are correlated to each other
3. Multi-dimensional signals: Natural images are sparse in the gradient domain

Why Distributed Sparsity?

- Arrow matrix: Impossible to recover \boldsymbol{X} even if non-zero pattern is known
- Matrix with $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{A})$ added to first column of \boldsymbol{X} is also a potential solution
- Our focus: Size of the sketch \boldsymbol{Y} to recover distributed sparse matrix X

Definition: Distributed Sparsity

- $\boldsymbol{\Omega} \subset[p] \times[p]$ is d-distributed subset if for all $k \in[p]$

1. $(k, k) \in \Omega$
2. $|\{(k, i) \in \boldsymbol{\Omega}\}| \leq d$
3. $|\{(i, k) \in \boldsymbol{\Omega}\}| \leq d$

- \boldsymbol{X} is d-distributed sparse matrix if

$$
\operatorname{supp}(\boldsymbol{X}) \subset \boldsymbol{\Omega}
$$

- \# off-diagonal nonzeros of every row and column $\leq d$ - 1

Convex Relaxation using I_{1}

- Solve underdetermined linear system

$$
\boldsymbol{Y}=A X B^{\top}
$$

- Known matrices: $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times p}$ with $m<p$
- Using tensor product notations

$$
\operatorname{vec}(\boldsymbol{Y})=\boldsymbol{B} \otimes \boldsymbol{A} \operatorname{vec}(\boldsymbol{X})
$$

- I_{1} based recovery:

$$
\begin{array}{ll}
\min _{\boldsymbol{X}} & \| \text { vec }(\boldsymbol{X}) \|_{1} \\
& \text { subjected to } \quad \boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}^{\top}
\end{array}
$$

Results from Compressed Sensing

- Guarantees on solution based on restricted isometric properties of $\boldsymbol{B} \otimes \boldsymbol{A}$

$$
\begin{aligned}
\delta_{r}(\boldsymbol{A}) \triangleq \inf & {\left[\delta:(1-\delta(\boldsymbol{A}))\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq(1-\delta(\boldsymbol{A}))\|\boldsymbol{x}\|_{2}^{2}\right.} \\
& \left.\|\boldsymbol{x}\|_{0} \leq r\right]
\end{aligned}
$$

- RIC of $\boldsymbol{B} \otimes \boldsymbol{A}$ is higher than that of \boldsymbol{A} and \boldsymbol{B}
- Proof works when \boldsymbol{X} is very sparse: sparsity $k=\Theta(1)$
- Our focus: Guarantees on recovery when $k=\mathcal{O}(p)$ and \boldsymbol{X} has distributed sparsity

Uniformly Random δ-Left Regular Bipartite Ensemble

- Bipartite graph: $G=([p],[m], E)$
- Uniform random δ-left regular bipartite graph: $\forall i \in[p]$ one chooses δ vertices uniformly and independently at random (with replacement) from [m]
- Uniformly random δ-left regular bipartite ensemble: Adjacency matrix of a uniform random δ-left regular bipartite graph

Main Result

I_{1} based recovery:

$$
\begin{aligned}
\boldsymbol{X}^{*}=\underset{\boldsymbol{X}}{\arg \min } & \|\operatorname{vec}(\boldsymbol{X})\|_{1} \\
\text { subjected to } & \boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}^{\top}
\end{aligned}
$$

Under following conditions:

- $\boldsymbol{X}: d$-distributed $p \times p$ sparse matrix
- $\boldsymbol{A}, \boldsymbol{B} \in\{0,1\}^{m \times p}$ are drawn independently and uniformly from the δ-random bipartite ensemble
- $\delta=\mathcal{O}(\log p)$
there exists a $c>0$ such that $\boldsymbol{X}^{*}=\boldsymbol{X}$ with probability exceeding $1-p^{-c}$ when

$$
m=\mathcal{O}(\sqrt{d p} \log p)
$$

- Furthermore, this holds even if $\boldsymbol{A}=\boldsymbol{B}$.

Implications

- Constraint of distributed sparsity need not be factored into the optimization problem

$$
\boldsymbol{X}^{*}=\underset{\boldsymbol{X}}{\arg \min }\|\operatorname{vec}(\boldsymbol{X})\|_{1} \text { subjected to } \boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}^{\top}
$$

- Near optimal bound $m=\mathcal{O}(\sqrt{d p} \log p)$
- logarithm away from the trivial lower bound $\mathcal{O}(\sqrt{d p})$

Distributed Matrix + Perturbation

Under following conditions:

- X : arbitrary $p \times p$ matrix
- $\boldsymbol{A}, \boldsymbol{B} \in\{0,1\}^{m \times p}$ are drawn independently and uniformly from the δ-random bipartite ensemble
- $\delta=\mathcal{O}(\log p)$
there exists a $c>0$ and $\epsilon \in(0,1 / 4)$ such that

$$
\left\|\boldsymbol{X}^{*}-\boldsymbol{X}\right\|_{1} \leq \frac{2-4 \epsilon}{1-4 \epsilon}\left(\min _{\left\{\boldsymbol{X}_{\Omega}: d-\text { distributed }\right\}}\left\|\boldsymbol{X}-\boldsymbol{X}_{\Omega}\right\|_{1}\right)
$$

with probability exceeding $1-p^{-c}$ when $m=\mathcal{O}(\sqrt{d p} \log p)$

- Furthermore, this holds even if $\boldsymbol{A}=\boldsymbol{B}$.

Rectangular Case

- Problem: $\boldsymbol{Y}=\boldsymbol{A} X B^{\top}$
- Rectangular sparse matrix: $\boldsymbol{X} \in \mathbb{R}^{p_{1} \times p_{2}}$
- Square measurement matrix: $\boldsymbol{Y} \in \mathbb{R}^{m \times m}$
- Extend previous theorem by padding zeros to sparse matrix to make it square
- The size of sketch is

$$
m=\mathcal{O}(\sqrt{d p} \log p)
$$

- $p=\max \left\{p_{1}, p_{2}\right\}$
- $d=\max \{$ row degree, column degree $\}$
- Weak result when $p_{2}=1$

Noisy Measurements

- Model:

$$
Y=A X B^{\top}+W
$$

where $\boldsymbol{W}_{i j}$ ~iid zero mean Gaussian noise

- Optimization problem

$$
\boldsymbol{X}^{*}=\underset{\boldsymbol{X}}{\arg \min }\left\|\boldsymbol{Y}-\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}^{\boldsymbol{\top}}\right\|_{2}^{2}+\lambda\|\operatorname{vec}(\boldsymbol{X})\|_{1}
$$

- Analysis is an open problem!

Summary

- Notion of distributed sparsity
- A distributed sparse matrix can be recovered from linear model $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}^{\top}$ via Λ_{1} minimization when sensing matrices are suitable random binary matrices
- Recovery procedure is robust to distributed matrix plus a perturbation

