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Sparse Matrix Recovery Problem

=

Y A

X B′

m×m m× p

p× p p×mm < p

I Goal: Recover distributed-sparse matrix X from Y = AXB
T

I Distributed sparsity: Every row and every column of X has

only a few non-zeros



Motivation

1. Source localization: basis expansion model approach in brain

using EEG signals

2. Covariance matrices: Only a few variables are correlated to

each other

3. Multi-dimensional signals: Natural images are sparse in the

gradient domain



Why Distributed Sparsity?

I Arrow matrix: Impossible to recover X even if non-zero

pattern is known

I Matrix with v ∈ ker (A) added to �rst column of X is also a

potential solution

I Our focus: Size of the sketch Y to recover distributed sparse

matrix X



De�nition: Distributed Sparsity

I Ω ⊂ [p]× [p] is d -distributed subset if for all k ∈ [p]

1. (k, k) ∈ Ω
2. | {(k, i) ∈ Ω} | ≤ d

3. | {(i , k) ∈ Ω} | ≤ d

I X is d -distributed sparse matrix if

supp (X ) ⊂ Ω

I # o�-diagonal nonzeros of every row and column ≤ d − 1



Convex Relaxation using l1

I Solve underdetermined linear system

Y = AXB
T

I Known matrices:A,B ∈ Rm×p with m < p

I Using tensor product notations

vec (Y ) = B ⊗ Avec (X )

I l1 based recovery:

min
X

‖vec (X )‖1
subjected to Y = AXB

T



Results from Compressed Sensing

I Guarantees on solution based on restricted isometric properties

of B ⊗ A

δr (A) , inf
[
δ : (1− δ(A)) ‖x‖22 ≤ ‖Ax‖22 ≤ (1− δ(A)) ‖x‖22
‖x‖0 ≤ r ]

I RIC of B ⊗ A is higher than that of A and B

I Proof works when X is very sparse: sparsity k = Θ(1)

I Our focus: Guarantees on recovery when k = O(p) and X has

distributed sparsity



Uniformly Random δ-Left Regular Bipartite Ensemble

I Bipartite graph: G = ([p], [m],E )

I Uniform random δ-left regular bipartite graph:

∀i ∈ [p] one chooses δ vertices uniformly and independently at

random (with replacement) from [m]

I Uniformly random δ-left regular bipartite ensemble:

Adjacency matrix of a uniform random δ-left regular bipartite
graph



Main Result

l1 based recovery:

X
∗ = argmin

X

‖vec (X )‖1

subjected to Y = AXB
T

Under following conditions:

I X : d -distributed p × p sparse matrix

I A,B ∈ {0, 1}m×pare drawn independently and uniformly from

the δ-random bipartite ensemble

I δ = O(log p)

there exists a c > 0 such that X ∗ = X with probability exceeding

1− p−c when

m = O(
√

dp log p)

I Furthermore, this holds even if A = B.



Implications

I Constraint of distributed sparsity need not be factored into the

optimization problem

X
∗ = argmin

X

‖vec (X )‖1 subjected toY = AXB
T

I Near optimal bound m = O(
√

dp log p)

I logarithm away from the trivial lower bound O(
√
dp)



Distributed Matrix + Perturbation

Under following conditions:

I X : arbitrary p × p matrix

I A,B ∈ {0, 1}m×pare drawn independently and uniformly from

the δ-random bipartite ensemble

I δ = O(log p)

there exists a c > 0 and ε ∈ (0, 1/4) such that

‖X ∗ − X‖1 ≤
2− 4ε

1− 4ε

(
min

{XΩ:d−distributed}
‖X − XΩ‖1

)
with probability exceeding 1− p−c when m = O(

√
dp log p)

I Furthermore, this holds even if A = B.



Rectangular Case

I Problem: Y = AXB
T

I Rectangular sparse matrix:X ∈ Rp1×p2
I Square measurement matrix: Y ∈ Rm×m

I Extend previous theorem by padding zeros to sparse matrix to

make it square

I The size of sketch is

m = O(
√

dp log p)

I p = max {p1, p2}
I d = max {row degree, column degree}

I Weak result when p2 = 1



Noisy Measurements

I Model:

Y = AXB
T +W

where W ij ∼iid zero mean Gaussian noise

I Optimization problem

X
∗ = argmin

X

∥∥∥Y − AXBT
∥∥∥2
2

+ λ ‖vec (X )‖1

I Analysis is an open problem!



Summary

I Notion of distributed sparsity

I A distributed sparse matrix can be recovered from linear model

Y = AXB
Tvia l1 minimization when sensing matrices are

suitable random binary matrices

I Recovery procedure is robust to distributed matrix plus a

perturbation


