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Dictionaries for sparse representations: Basic concepts

What is Compressed Sensing

In many applications one would like to recover x from its
linear measurements or observed data

In mathematical terms, the observed data y ∈ Rm is
connected to the signal x ∈ RM of interest via

y = Φx

When the number of measurements m is equal to M, the
recovered x is in general Φ−1y

However, in many applications, it is much more desirable to
take fewer measurements provided one can still recover x

In particular, when m < M, the linear system Φx = y is
under-determined and in general possesses infinitely many
solutions
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Dictionaries for sparse representations: Basic concepts

In this case, an interesting question arises: “is it still possible
to recover x possessing fewer nonzero components from y
through a computationally tractable procedure ?”

The research area associated to this phenomenon has become
popular as Sparse Representation Theory, Compressed
Sensing (CS), Compressive Sampling

A vector x ∈ RM is k−sparse if it has k nonzero coordinates.
That is, ‖x‖0 := |{i | xi 6= 0}| = k < M

One can recover sparse x from its linear measurements by
solving the following optimization problem:

P0 : min
x
‖x‖0 subject to Φx = y (1)

This l0−minimization problem is computationally not
tractablea in general

aSimon Foucart and Holger Rauhut, “A Mathematical Introduction to
Compressive Sensing,” Birkhauser, Baseln, 2013. 5 / 43



Dictionaries for sparse representations: Basic concepts

On the solvability of P0 problem

There have been attempts to repose or solve P0 problem via
greedy and convex relaxation methods

D.Donoho et.al.a posed an equivalent of this problem as

P1 : min
x
‖x‖1 subject to b = Φx (2)

Due to shape of l1 ball, l1 minimization promotes sparsity

An l1 minimization problem can be recast as a linear
programming problem (LPP)

Fast solvers are available

The algorithms OMP, STOMP, WMP, MP, ROMP fall under
greedy category. Among all, OMP is most popular algorithm

aS.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic Decomposition by
Basis Pursuit,” SIAM, 2001.
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Dictionaries for sparse representations: Basic concepts

Sufficient conditions for equivalence between P0 and P1

The general question of CS is: “when do both problems (1)
and (2) admit same solution ?”

Definition

The mutual-coherence of a given matrix Φ is the largest absolute
inner-product between different normalized columns of Φ.
Denoting the k-th column in Φ by φk , the mutual-coherence is
given by

µ(Φ) = max
1≤ i ,j≤ m, i 6=j

| φTi φj |
‖φi‖2‖φj‖2

. (3)
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Dictionaries for sparse representations: Basic concepts

The coherence parameter provides a kind of measure for
checking whether or not P0 and P1 are equivalent

Theorem

Let Φ be an m×M matrix and let 0 6= x ∈ RM be a solution of P0

satisfying

‖x‖0 <
1

2
(1 + (µ(Φ))−1). (4)

Then x is the unique solution a of P0 and P1.

aD.L. Donoho et. al., “Stable Recovery of Sparse Over complete
Representations in the Presence of Noise,” IEEE Trans. Inform. Theory, 2006.

In simulations, the stated equivalence is established through
phase diagrams
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Dictionaries for sparse representations: Basic concepts

Terense Tao and Candes proposed an alternative approach
establishing the stated equivalence

Definition

We say that a matrix Φ satisfies Restricted Isometry Property
(RIP) of order k , if there is a 0 < δk < 1 such that

(1− δk)‖z‖l2 ≤ ‖ΦT z‖l2 ≤ (1 + δk)‖z‖l2 , z ∈ Rk , (5)

holds for all T of cardinality k .

The following theorem a establishes the equivalence between P0

and P1 problems through RIP

aE. Candes, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematique, 2008
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Dictionaries for sparse representations: Basic concepts

Theorem

Suppose an m ×M matrix Φ has the RIP of order 2k with
constant δ2k <

√
2− 1, then P0 and P1 have same k−sparse

solution if P0 has a k−sparse solution.

The widest possible known range of k is of the order m
log(M

m
)

The only known constructions yielding matrices that satisfy
RIP for this range are based on random matricesa

aBaraniuk.R, et.al. “A Simple Proof of the Restricted Isometry Property for
Random Matrices,” Constructive Approximation, 2008
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Dictionaries for sparse representations: Basic concepts

The following proposition relates the RIP constant δk and µ

Proposition
a Suppose that Φ1, . . . ,ΦM are the unit norm columns of the
matrix Φ with coherence µ. Then Φ satisfies RIP of order k with
constant δk = (k − 1)µ.

aM. Elad, “Sparse and redundant representations; from theory to
applications in signal and image processing,” Springer, Berlin, 2010.

Since the role of CS matrix is to provide sparse
representations to a given y , it is referred to as dictionary

There are two classes of approaches being developed for
generating dictionaries

Data-independent dictionaries
Data-driven dictionaries
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Summary of contributions

The summery of my work is as follows:

Deterministic construction of general size binary sensing
matrices that enjoy RIP compliance

Analysis of optimal bounds on the column sizes of binary
sensing matrices

Application of our constructions to image reconstruction and
retrieval problems

Analysis and retrieval of large medical databases via a new
data-driven method
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Part II: Data-independent dictionaries: Theory and
applications
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Data-independent dictionaries: Theory and applications

Advantage with deterministic constructions

For random matrices, there is nonzero probability for
noncompliance with RIP. This is not case with deterministic
matrices

Advantages with deterministic binary constructions

Binary matrices being sparse and possessing 0, 1 as elements
provide multiplier-less and faster dimensionality reduction
operation, which is not possible with their dense counterparts

These matrices have smaller density than Gaussian matrices.
Here, by density, one refers to the ratio of number of nonzero
entries to the total number of entries of the matrix
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Data-independent dictionaries: Theory and applications

Existing deterministic constructions

R. Devorea has constructed deterministic binary sensing
matrices of size p2 × pr+1, where p is a prime power

Later on, S. Li, F. Gao et. al.b have generalized the Devore’s
work, constructing binary sensing matrices of size
|P|q × qL(G), where q is any prime power and P is the set of
all rational points on algebraic curve X over finite field Fq

P. Indykc has constructed binary sensing matrices using Hash
functions and extractor graphs with sizes r2O(log log n)O(1) × n,
where r � n

aRonald A. DeVore, “Deterministic constructions of compressed sensing
matrices,” Journal of Complexity, 2007.

bS. Li et.al., “Deterministic construction of compressed sensing matrices via
algebraic curves,” IEEE Trans. Inf. Theory, 2012.

cP. Indyk, “Explicit constructions for compressed sensing matrices,” in Proc.
19th Annu. ACM-SIAM, SODA 2008.
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Data-independent dictionaries: Theory and applications

A. Amini et. al.a have constructed binary, bipolar and ternary
sensing matrices using OOC codes

G.Xu et. al.b have constructed CS matrices using Fourier
matrices

J. Bourgain et. al.c have constructed RIP matrices of order

k ≥ m
1
2

+ε, for some ε > 0 and M1−ε ≤ m ≤ M using additive
combinatorics

It is remarkable that this construction overcomes the natural
barrier k = O(m

1
2 ) for those based on coherence

R. Calderbank et.al. have constructed CS matrices of size
2m × 2(r+1)m using Delsarte-Geothals codes.

aA. Amini et.al., “Deterministic construction of binary, bipolar and binary
compressed sensing matrices,” IEEE Trans. Inf. Theory, 2011.

bG. Xu et. al., Compressed sensing matrices from Fourier matrices, IEEE
Transactions on Information Theory, 2015.

cJ. Bourgain et. al., “Explicit constructions of RIP matrices and related
problems,” Duke Math. J., 2011. 16 / 43



Data-independent dictionaries: Theory and applications

Motivation

All existing binary and ternary constructions are given for
specific sets of row sizes

Other constructions provide dense CS matrices

Objective

To construct general size and sparse binary sensing
matrices which are useful for fast processing

The sparse CS matrix may contribute to fast processing with
low computational complexity in Compressed Sensinga

aA. Gilbert et. al., “Sparse recovery using sparse matrices,” Proceedings of
IEEE, 2010.
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Data independent dictionaries: Theory and Applications

A. Construction of binary sensing matrices through multi-variable
polynomials

In the present work, we extend the work in [4] and construct
binary sensing matrices based on multi-variable
homogeneous polynomials

The advantage of using such polynomials is that a different
class of CS matrices can be constructed

The size of the matrix obtained in [4] is p2 × p(r+1) and of
our matrix is p3 × p(r+1) − 1

Theorem

The matrix Φ0 = 1
pΦ satisfies the RIP with δk = k−1(r(p−1)+1)

p2 for

any k < p2

r(p−1)+1 + 1.
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Data independent dictionaries: Theory and Applications

The field that is considered in the above construction is Zp

If we consider any finite field Fq, q = pi , i ∈ Z+ in place of
Zp, then sizes of Devore’s and our matrices become
p2i × pi(r+1), p3i × pi(r+1) − 1 respectively

Further, we also extend our construction to deal with circulant
matrices

Theorem

The circulant matrix Φ1 = 1
pΦ0 has the RIP with δk = 24(k − 1) r

p

whenever k − 1 < p
24r

These constructions can further be generalized through n
variable polynomials
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Data independent dictionaries: Theory and Applications

B. On the role of extremal set theory and set systems in CS

Now we attempt to relate the notions of extremal set
theorya and set systems to CS

In particular, in the first result using the ideas from extremal
set theory, we bound the column size of binary sensing matrix

The maximum possible column size of a binary sensing matrix

is at most
(mr )
(kr)

, where m is the row size, k is the number of

ones each column contains and r − 1 is the cardinality of
overlap between any two columns

We also prove the existence of binary sensing matrices having
optimal column size asymptotically for given r and k

aVojtech Rodl, “On a packing and covering problem,” European journal of
combinatorics, 5, 69-78, 1985.
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Data independent dictionaries: Theory and Applications

In the second result, using the ideas from set systems we
generate sparse binary sensing matrices from existing binary
sensing matrices

Theorem

Suppose f (x1, x2, . . . , xm) = x1 + x2 + . . .+ xm +
∑

i<j xixj is a
symmetric polynomial. Let Φ be a binary sensing matrix of size
m ×M such that m(m+1)

2 < M with the coherence being at most
r
k . Here k represents the number of nonzero elements that each
column of Φ has. Then there exists a binary sensing matrix Ψ of

size m(m+1)
2 ×M whose coherence is at most

r+(r
2)

k+(k2)
.
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Data independent dictionaries: Theory and Applications

The following theorem concludes the RIP compliance of
Ψ0 = 1√

k+(k2)
Ψ

Theorem

The matrix Ψ0 = 1√
k+(k2)

Ψ has the RIP with δ = (k − 1)

(
r+(r

2)
k+(k2)

)
whenever k − 1 <

k+(k2)
r+(r

2)
.

Remark: The density of the new matrix Ψ is
k+(k2)
m+(m2)

, which is

smaller than k
m , the density of Φ.
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C. Construction of sparse CS matrices from existing ones

1. Input: Two matrices Ψ, Ψ′ of sizes nk ′′ ×M, n′k ′ ×M ′

2. Suppose |supp(Ψi ) ∩ supp(Ψj)| ≤ r and
|supp(Ψ′i ) ∩ supp(Ψ′j)| ≤ r ′, ∀ i 6= j

3. Assume n′ > n, k ≤ min{k ′, k ′′} and r ≤ r ′ ≤ k ≤ n
4. Set Si = (((supp(Ψi )− 1)( mod n))T + 1T),
|Si | = k ′′, ∀ i = 1, 2, . . . ,M

5. Similarly, S ′j with |S ′j | = k ′ are defined for j = 1, 2, . . . ,M ′

6. Set S ′′i ,j = S ′j ,k − 1 + n′Si ,k , S ′j ,k and Si ,k are

first k entries of S ′j and Si

7. |S ′′i ,j | = k and Let S ′′i ,j = (S ′′i ,j ,1, S
′′
i ,j ,2, . . . ,S

′′
i ,j ,k)

1 ≤ S ′′i ,j ,l ≤ nn′, ∀l = 1, 2, ..., k

8. From each S ′′i ,j , create a vector vi ,j of length nn′k

and vi ,j = 1 at (l − 1).nn′ + S ′′i ,j ,l for l = 1, 2, . . . , k and zero

elsewheres
9. Output: Φ′, a matrix of size nn′k ×MM ′, whose columns are vi ,j .
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Data independent dictionaries: Theory and Applications

D. Construction via Euler Squares and applications

Using Euler squares, we construct general size binary CS
matrices

Definition

An Euler Square of order n, degree k and index n, k is a square
array of n2, k−ads, (aij1, aij2, . . . , aijk), where
aijr = 0, 1, 2, . . . , n − 1; r = 1, 2, . . . , k; with i , j =
1, 2, . . . , n and n > k ; aipr 6= aiqr and apjr 6= aqjr for p 6= q and
(aijr + 1)(aijs + 1) 6= (apqr + 1)(apqs + 1) for i 6= p and j 6= q.

Harris F. MacNeish a has constructed Euler Squares for the
following cases:

aH. F. MacNeish, “Euler squares,” Ann. Math., 1922.
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Data independent dictionaries: Theory and Applications

Index p, p − 1, where p is a prime number, more generally
Index pr , pr − 1, for a prime p

Index n, k, where n = 2rpr1
1 pr2

2 . . . , p
rl
l for distinct odd primes

p1, p2, . . . , pl and k = min{2r , pr1
1 , p

r2
2 , . . . , p

rl
l } − 1

Using the Euler square of index n, k, we define the elements of
a binary sensing matrix Φ as: For 1 ≤ i ≤ nk, 1 ≤ j ≤ n2,

φij =

{
1 if (aj)b i−1

n c+1 ≡ i − 1(mod n)

0 otherwise,

}
, (6)

where (aj) is the j th k−ad, (aj)l is l th element in j th k−ad
and bxc is the largest integer not greater than x

The following lemma finds a bound on mutual coherence of Φ
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Data independent dictionaries: Theory and Applications

Lemma

The coherence of Φ is atmost equal to 1
k .

Using the above Lemma and Proposition (5), we conclude the RIP
compliance of Φ.

Theorem

The matrix Φ0 = 1√
k

Φ satisfies RIP with δk ′ = k ′−1
k for any

k ′ < k + 1.

Euler Square of index n, k gives matrix of size nk × n2

In this matrix, each column contains k number of ones and
coherence is atmost 1

k

The maximum possible column size is thus
(nk2 )
(k2)

= O(n2) = O((mµ)2)
26 / 43



Data independent dictionaries: Theory and Applications

The density is 1
n , which is very small for large n

The following theorem summarizes the main result:

Theorem

Suppose m is any positive integer different from p, p2 for a prime
p. Then there exists a CS matrix whose row size is m and the
column size is (mµ)2, where µ is a coherence parameter.

Comparison of the numerical performance:
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Data independent dictionaries: Theory and Applications
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Figure : Comparison of the reconstruction performances of Euler Square
based, Bernoulli random and the Gaussian random matrices when the
matrices are of size (a) 55× 121 (top plot) and (b) 230× 529 (bottom
plot). These plots indicate that the Euler Square based matrix shows
superior performance for some sparsity levels, while for other levels all
matrices result in the same performance. The x and y axes in both plots
refer respectively to the sparsity level and the success rate (in % terms).
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Data independent dictionaries: Theory and Applications

The present construction is simple in the sense that it does
not involve function evaluations like in [4] and gives matrices
with small density

To generate an Euler square matrix of size p, p − 1, it is only
required to store two cyclic permutations of length p and
p − 1 respectively

For index pi , pi−1, it is sufficient to store at most pi

2
permutations

To the best of our knowledge, the constructions possessing
sparsity k ′ =

√
m (that is, coherence µ = 1√

m
) exist for

non-binary matrices with row size m being prime or prime
power

We construct the binary matrices that provide guarantees for
signals of sparsity up to k ′ =

⌊√
m
⌋

for different class of row
sizes such as pi (pi − j), where p is prime i ≥ 1, and j = 1, 2
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Data independent dictionaries: Theory and Applications

For an arbitrary binary matrix, if the inner-product between
any two columns is at most 1, every column contains fixed
(
√

m) number of ones (that is coherence is at most 1√
m

) and

row size is m, then the maximum possible column size
M = O(m) as mentioned earlier

Using Euler squares, we have constructed matrices that
provide guarantees for signals of sparsity up to k ′ =

⌊√
m
⌋

with M = O(m)

Through an extension of our construction methodology, it is
possible to generate ternary matrices, for which k ′ =

√
m

holds (that is, coherence is in the order of
√

M−m
m(M−1) ) with

column size M = O(m
3
2 )
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Image reconstruction via Euler Squares

It is observed that the CS matrices constructed from the Euler
Squares of indices p, s for a prime p and s = bp2c to p − 1,
give relatively superior performance than their Gaussian
counterparts

We demonstrate the efficacy of Euler Square based matrix
using image reconstruction from lower dimensional patches,
where the patches are generated via the sensing matrices

The reconstructions shown in Figure below correspond to
different down-sampling factors, viz 2.6 and 1.6

Here by down-sampling factor, we mean the ratio of original
patch size to reduced patch size which is same as M

m (where,
m×M is the size of the matrix used for projecting data to the
lower dimensional space)

31 / 43



Image reconstruction via Euler Squares

Figure : Orginal image

(b) (c) (d) (e)

Figure : For the original image, the images in (b) and (d) are those
reconstructed via the Euler Square based matrices with down-sampling
factors 2.6 and 1.6 respectively. The images in (c) and (e) are those
obtained via the corresponding Gaussian matrices. This figure states that
Euler Square based CS matrices provide competitive reconstruction
performance.
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Image reconstruction via Euler Squares

The associated reconstruction errors in terms of SNR are:

Down-sampling Euler recovery Gaussian recovery

factor (Mm ) SNR error SNR error (Average error)

4 13.36 13.44
2.6 16.44 15.03
2 19.63 18.14

1.6 20.61 19.74

Table : A comparative error analysis of reconstruction by Euler based and
Gaussian matrices for different down-sampling factors (M

m ) 4, 2.6, 2, 1.6.
The average error over 1000 iterations is reported for Gaussian
matrices.

Signal-to-noise ratio (SNR) of x is computed using

SNR(x) = 10. log10

(
‖x‖2

‖x − x̃‖2

)
dB.
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Data independent dictionaries: Theory and Applications

Application to CBIR via Euler square matrices

In the recent past, Gaussian matrices have been used to
project data into lower dimension for classificationa

The problemb of searching for similar images in a large image
repository based on content is called Content Based Image
Retrieval (CBIR)

It is demonstratedc that the proposed binary sensing matrices
project data into lower dimensional spaces in such a way that
the reduced vectors are useful for the purpose of CBIR

aC. M. Fira et.al., “Ecg compressed sensing based on classification in
compressed space and specified dictionaries,” in Proc. EUSIPCO, 2011.

bY.C. Chen et.al, In-plane rotation and scale invariant clustering using
dictionaries, Image Processing on IEEE Transactions, 2013.

cSimulation results are not included here
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Data independent dictionaries: Theory and Applications

Additionally, the proposed dimensionality reduction technique
through binary sensing matrices allows for reconstruction,
which is very important in fields like tele-medicine

The other dimensionality reduction techniques and even the
data-driven Dictionary based methods in general do not
provide this advantage
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Conclusions and Future Work

So far the objectives behind my work have centered around
constructing binary and ternary sensing matrices

I am now interested in constructing more general matrices,
through non-coherence arguments and Majorization and
minimization methods

Definition

The smallest number of columns that are linearly dependent is
called as a spark of the matrix.

If spark(Φ) > 2k then every k−sparse signal x can exactly
recovered by l0- minimization

It is necessary and sufficient condition for l0- minimization
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Donoho et.al., have given the lower bound for spark through
coherence. i.e, Spark(Φ) ≥ 1 + 1

µ(Φ)
Later Shu-Tao Xia et.al., have improved this bound for binary
sensing matrices in the following way:

Theorem

Let Φ be a binary matrix with minimum column weight k > 0 and
maximum inner-product of any two different columns of Φ is
r > 0. Then spark(Φ) ≥ 2k

r .

Also, they have given a binary construction which further
maximizes the above mentioned bound
J. Bourgain et.al., have proved the following lemma

Lemma

Let k ≥ 210 and s be a positive integer. Assume that the
coherence parameter of the matrix Φ is µ ≤ 1

k . Also, assume that
for some δ ≥ 0 and any disjoint J1, J2 ⊂ {1, 2, . . . ,M} with
|J1| ≤ k , |J2| ≤ k we have |〈

∑
j∈J1

uj ,
∑

j∈J2
uj〉| ≤ δk. Then Φ

satisfies the RIP of order 2sk with constant 44s
√
δ log k . 38 / 43
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