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Spectrum Cartography

• Constructing maps across space and time using spectrum

measurements

• Two types:

• Power distribution across frequency
• Channel gain across frequency between each node and any
given point in space

• Focus: Expected value that re�ects long term e�ects on the

power of a signal, distributed in space
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Problem

• Primary network
• Number of transmitters
• Transmitter Locations
• Transmit Powers

Unknowns

• Sensors the power received over a

given frequency bin at their location

• measurements are sent to a fusion

center

• Aim: Reconstruct the spatial power

map at the fusion center using

measurement - sensor location pairs

Sensor

Active

Source

Fusion
Center
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Motivation: Spectrum Management

• Monitoring radio spectrum utilization

• Applications:
• Dynamic spectrum allocation
• Radio planning
• Monitoring spectrum usage
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Cognitive Radio Network

• Cognitive Radio: context-aware intelligent radio

• Adaptive spectrum sharing without disturbing primary users

• Secondary users scan for instantaneous availability of spectrum

bands

• Requires knowledge of the spatial and temporal tra�c

statistics of di�erent services
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Other Applications

• Radio planning
• Interference analysis
• Resource allocation
• Identi�cation of coverage holes in the service area for
placement of new Access Points or Base Stations.

• Monitoring spectrum
• Detect any unauthorized transmissions in licensed band
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Problem Setup

• Primary network
• Ns stationary, mutually independent
transmitting sources

• Transmitter locations X = {x s}Ns

s=1

• Transmit power P = {Ps}Ns

s=1

• Secondary network
• Nr coordinated sensors
• Sensor locations Y = {y r}

Nr

r=1

• Objective: Reconstruct the power

map over the entire area
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Nr = 6
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Received Signal Strength

• Signal received at sensor r is a superposition of the signals

from all the transmitters

• The average received power at y r is

φ(r) =
Ns∑
s=1

PsHsr r = 1, 2, ...,Nr

Hsr is the random attenuation of power
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Power Attenuation Model

• Hsr can be characterized using two multiplicative components:

Hsr = ρ(‖x s − y r‖)ξ(y r )

• Distance dependent path loss ρ(d) = min
{
1,
(
d0

d

)η}
• η - path loss exponent, d0 - reference distance
• d - distance between transmitter and receiver

• Shadowing fading or large scale fading ξ

• Measurements are

φ(r) =
Ns∑
s=1

PsHsr r = 1, 2, ...,Nr
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Power Attenuation Model

• Hsr can be characterized using two multiplicative components:

Hsr = ρ(‖x s − y r‖)ξ(y r )

• Distance dependent path loss ρ(d) = min
{
1,
(
d0

d

)η}
• η - path loss exponent, d0 - reference distance
• d - distance between transmitter and receiver

• Shadowing fading or large scale fading ξ

• Measurements are

φ(r) =
Ns∑
s=1

PsHsr =⇒ φ(r) =
Ns∑
s=1

Psρ (‖y r − x s‖) ξ(r)
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Power Attenuation Model

• Hsr can be characterized using two multiplicative components:

Hsr = ρ(‖x s − y r‖)ξ(y r )

• Distance dependent path loss ρ(d) = min
{
1,
(
d0

d

)η}
• η - path loss exponent, d0 - reference distance
• d - distance between transmitter and receiver

• Shadowing fading or large scale fading ξ

• Measurements in decibel (dB) scale are

φdB(r) = 10 log10

[
Ns∑
s=1

Psρ (‖y r − x s‖)

]
+ ξdB(r)

r = 1, 2, ...,Nr
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Shadowing Model

• Shadowing ξ follows log-normal distribution

• ξdB is spatially correlated Gaussian random process

• Zero mean, variance σ2

• Widely accepted Gudmundson's model for correlation

• Correlation between any two points u and v

R(u, v) = e−‖u−v‖ ln 2/dcor

dcor - decorrelation distance
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Goal

• Reconstruction algorithm for the power map of entire area

• Inputs: Sensor observations and sensor locations

• Assumption: Knowledge of environment dependent parameters

- decorrelation distance and path loss exponent
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Spatial Interpolation

• Deterministic methods
• Extent of similarity (Inverse Distance Weighted)
• The degree of smoothing (Splines based methods)

• Stochastic methods - kriging



Motivation and Context System Model Spectral Map Estimation Analysis of Algorithm Summary

Why Stochastic Methods?

• Incorporates the concept of randomness in function to be

interpolated

• Exploits knowledge of statistical model of function

• Indication of estimation error
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Two-part reconstruction framework

• Power received at any point in space can be treated as a

random �eld with two components

φdB(r) = 10 log10

[
Ns∑
s=1

Psρ (‖y r − x s‖)

]
︸ ︷︷ ︸

Pathloss

+ ξdB(r)︸ ︷︷ ︸
Shadowing

• Trend component - path loss part
• Residual component - shadowing part

• First and second order statistics
• Mean - unknown
• Covariance - known

• Strategy: Estimate the deterministic component �rst and

random part of using this estimate
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Stage 1: Path loss Component Estimation

• The path loss model gives a parametric form to measurements

φdB(r) = 10 log10

[
Ns∑
s=1

Psρ (‖y r − x s‖)

]
︸ ︷︷ ︸

Parametric form

+ ξdB(r)︸ ︷︷ ︸
Correlated Gaussian term

• Parameters

• Transmitter locations {x s}Ns

s=1

• Transmit power {Ps}Ns

s=1
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Why not conventional approaches?

• Classical approaches:
• Least Squares, Maximum Likelihood, Maximum A Posteriori

• Di�cult!
• Logarithm of sum of unknown parametric components

• Consider measurements in linear scale to avoid the logarithm?
• Shadowing becomes multiplicative
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Dictionary Based Estimation

• An alternate approach: Basis Expansion Model (BEM)∗

• Sample the parameter to be estimated over the range of

possible values to form an over-complete basis

• Candidate set of N source locations Z = {z i}Ni=1 , based on a

virtual network grid
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Virtual Grid Model
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Figure: Wireless network with Ns = 3 transmitters, Nr = 7 sensors and
N =25 candidate locations
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Path loss Component Representation

• Path loss component in linear scale,

∑Ns

s=1 Psρ (‖y r − x s‖) =

[
ρ (‖z1 − y r‖) ρ (‖z2 − y r‖) . . . ρ (‖zN − y r‖)

]
θ1
θ2
...

θN


︸ ︷︷ ︸

θ

• θ is Ns sparse power vector
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Path loss Component Representation

• Path loss component in linear scale,


∑Ns

s=1 Psρ (‖y1 − x s‖)∑Ns

s=1 Psρ (‖y2 − x s‖)
...∑Ns

s=1 Psρ (‖yN − x s‖)

 =


ρ (‖z1 − y1‖) ρ (‖z2 − y1‖) . . . ρ (‖zN − y1‖2)
ρ (‖z1 − y2‖) ρ (‖z2 − y2‖) . . . ρ (‖zN − y2‖)

...

ρ
(∥∥z1 − yNr

∥∥) ρ
(∥∥z2 − yNr

∥∥) . . . ρ
(∥∥zN − yNr

∥∥)


︸ ︷︷ ︸
A


θ1
θ2
...

θN


︸ ︷︷ ︸

θ

• θ is Ns sparse power vector
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Path loss Component Representation

• Measurements in dB scale,
φdB(1)
φdB(2)

...

φdB(Nr )


︸ ︷︷ ︸

φdB

= 10 log10 {Aθ}+


ξdB(1)
ξdB(2)

...

ξdB(Nr )


︸ ︷︷ ︸

ξdB

• θ is Ns sparse power vector
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Measurement Model

• The measurements can be written as

φdB = 10 log10(Aθ) + ξdB

• Sparse solution reveals the location of sources and their

transmit power

• Model is not linear

• Traditional compressive sensing techniques do not apply

directly
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Exploiting Spatial Correction

• Measurement vector φdB ∼ N (µ, σ2Γ)

• Mean vector µ ∈ RNr is path loss component in dB scale

µi = 10 log10

(
Ns∑
s=1

Psρ (‖y i − x s‖)

)

• σ2 is shadowing variance
• Shadowing correlation matrix Γ ∈ RNr×Nr is de�ned using
modi�ed Gudmundson's model
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Greedy Approach

• Locate a source in each iteration
• Search over the candidate locations set to �nd the location
that maximizes a likelihood function

• Evaluate corresponding transmitter power to update transmit
power estimate

• Update the likelihood function to add the contribution of the

identi�ed source

• Repeat until no candidate can further improve likelihood
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Likelihood Function

• The ML estimate of transmitter locations over Z, given
estimates till k − 1th iteration {Ik−1, θ̃

k−1}[
IML θ̂ML

]
= argmax

1≤I≤N,θ̂>0
f (φdB|I , θ̂,Ik−1, θ̂

k−1
) (1)

• Probability density function f

• Correlated Gaussian distribution
• Covariance σ2Γ
• Mean µ(I , θ̃|Ik , θ̃

k

) = 10 log10

(
Aθ̃

k

+ θ̃AI

)
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Optimization Problem

IML = argmin
1≤I≤N

{[
φdB − µ(I , θ̂ML(I )|Ik−1, θ̂

k−1
)
]T

Γ−1[
φdB − µ(I , θ̂ML(I )|Ik−1, θ̂

k−1
)
]}

(2)

θ̂ML(I ) = argmin
θ̂>0

{[
φdB − µ(I , θ̂|Ik−1, θ̂

k−1
)
]T

Γ−1[
φdB − µ(I , θ̂|Ik−1, θ̂

k−1
)
]}

(3)
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Wrong Approach!

• Does not work: In kth iteration, it tries explain all

measurements with k sources when there are actually Ns

sources

• Once a wrong location is chosen, the error propagates through

the subsequent iterations
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Modify Likelihood Function

• Modi�cation: Insert a damping term in the cost function

• The path loss function is a decaying function

• Forgetting term gives exponentially less weight to

measurements which are away from the candidate location

• Damping term for measurement at y r and

candidate location z : e−λ||y r−z ||, λ > 0
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Modi�ed Likelihood Function

• The negative log likelihood function for candidate location

index I and transmit power θ̃ in the kth iteration is given by

Lk(I , θ̂) =
[
φdB − µ(I , θ̂|Ik−1θ̂

k−1
)
]T
F IΓ

−1F I[
φdB − µ(I , θ̂|Ik−1, θ̂

k−1
)
]

(4)

• The forgetting term matrix F I ∈ RNr×Nr is a diagonal matrix

with (i , i)th entry as e−λ||y i−z I ||
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Power Estimation

• Power estimate can be now approximated as

Θ(I ) ≈
(
1TF IΓ

−1F I [φdB − 10 log10 (AI )]

1TF IΓ
−1F I1

)+

• Estimate of power if there is a transmitting source at

candidate location I
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Algorithm Input and Output

• Inputs from sensor network

• Measurements in dB scale:
φdB ∈ RNr×1

• Sensor locations {y r}
Nr

r=1

• Knowledge of environment

parameters

• Outputs

• Parameters
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Algorithm Input and Output

• Inputs from sensor network

• φ ∈ RNr×1

• {y r}
Nr

r=1

• Knowledge of environment

parameters

• Outputs

• Source location indices I

• Transmit power estimates θ̂

• Parameters
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Algorithm Input and Output

• Inputs from sensor network

• φ ∈ RNr×1

• {y r}
Nr

r=1

• Knowledge of environment

parameters

• Shadowing decorrelation
distance dcor

• Path loss exponent η

• Reference Distance d0

• Outputs

• I

• θ̂

• Parameters
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Algorithm Input and Output

• Inputs from sensor network

• φ ∈ RNr×1

• {y r}
Nr

r=1

• Knowledge of environment

parameters

• dcor

• η

• d0

• Outputs

• I

• θ̂

• Parameters
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Algorithm Input and Output

• Inputs from sensor network

• φ ∈ RNr×1

• {y r}
Nr

r=1

• Knowledge of environment

parameters

• dcor

• η

• d0

• Outputs

• I

• θ̂

• Parameters

• Candidate locations
Z = {z i}Ni=1

• Forgetting factor parameter
λ
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Algorithm Input and Output

• Inputs from sensor network

• φ ∈ RNr×1

• {y r}
Nr

r=1

• Knowledge of environment

parameters

• dcor

• η

• d0

• Outputs

• I

• θ̂

• Parameters

• Z = {z i}Ni=1

• λ
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Greedy Algorithm

Input: φdB,Y,Z measurements, sensor locations, candidate set

Output: I,θ̃ index set, power estimates

Initialization: k ← 1, I = {} , θ̃ = 0,

Ω0 ← 1, 2, . . . ,N
Repeat

I(k)← min
I∈Ωk−1

Lk(I , θ̃I ) best among eligible candidates

θ(I(k))← Θ̃I(k) power estimate

k ← k + 1

Ωk ← {I : Lk(I , θ̃I ) < Lk(I , 0)} set of eligible candidates

Until Ωk = {} stop: no candidate improves likelihood
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Greedy Algorithm
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Greedy Algorithm

Input: φdB,Y,Z measurements, sensor locations, candidate set

Output: I,θ̃ index set, power estimates

Initialization: k ← 1, I = {} , θ̃ = 0,

Ω0 ← 1, 2, . . . ,N
Repeat

I(k)← min
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Lk(I , θ̃I ) best among eligible candidates

θ(I(k))← Θ̃I(k) power estimate
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Ωk ← {I : Lk(I , θ̃I ) < Lk(I , 0)} set of eligible candidates

Until Ωk = {} stop: no candidate improves likelihood
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Stage 2: Shadowing Component Estimation

• Remove path loss component from the measurements to

obtain shadowing observations

ˆ̂
ξdB = φdB − 10 log10(AI θ̃)

• Mean square error optimal estimate of shadowing is obtained

by Simple Kriging

• Linear interpolation

ξ̃dB(u) =
Nr∑
r=1

Gr
ˆ̂ξdB(r) (5)
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Shadowing Component Estimation

• Interpolation weights are given by Wiener-Hopf equation

• Estimate at a point u is

ξ̃dB(u) = γTuY(σ2Γ)−1ˆ̂
ξdB (6)

γuY ∈ RNr×1, γuY(i) = σ2e−∆‖y i−u‖/dcor

• Lower bound on MSE error

ε(u) = σ2 − γTuY(σ2Γ)−1γuY (7)
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Power Map Estimate

• Combine shadowing estimate with path loss estimate at all

points to obtain the estimated power map

φ̃(u) = 10 log10

(∑
s∈I

θ̃(s)ρ (‖u − z s‖)

)
+

1

σ2
γTuYΓ

−1ˆ̂ξdB

(8)
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Simulation Setup

• 100 m × 100 m

• 3 sources transmitting at unit power

• Path loss model: min{1,∆/dη}
• Path loss exponent η = 4
• Reference parameter ∆ = 60m4

• Shadowing decorrelation distance dcor = 25 m

• Grid spacing = 10 m



Motivation and Context System Model Spectral Map Estimation Analysis of Algorithm Summary

Reconstructed Map
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(a) Power map generated by 3 sources
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(b) Power distribution recovered by

the algorithm with Nr = 1000,

N = 121

Figure: Power distribution over an area of 104m2, σ = 4dB
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Algorithm Performance
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Figure: Performance of algorithm with varying number of sensors with
λ = 1 and N = 121
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Forgetting Factor λ
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Figure: Performance of algorithm with varying forgetting factor λ with
Nr = 1000 with no shadowing component
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Error Analysis

• Interpolation problems - Mean and mean square error at any

arbitary point in the operational area

• Di�culty: Complicted sequential nature of greedy algorithm

• Analysis under simpli�ed assumptions

• Lower bound on statistics of error
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Simplifying Assumptions

• Assumptions:

1. Algorithm picks the candidate location closer to each of the
actual transmitter location

2. Transmit power estimates are exactly equal to actual transmit
power when shadowing is absent

• Error can be due to

1. Quantization of source location
2. Shadowing term
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De�ntions

• Grid dimensions: ϑ1, ϑ2

• Parameter vector:Υ ∈ R3Ns×1

Υ ,
[
P1 xT1 P2 xT2 . . . PNr

xTNr

]T
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Notations

• κ = 10
ln 10

• Bs ,
F ιs Γ

−1F ιs
1
TF ιs Γ

−1F ιs 1
, where ιs is the index of candidate location

corresponding to sth transmitter.

• ζs , κ́η2

[
y1−xS
‖y1−xS‖2

y2−xS
‖y2−xS‖2

. . .
yNR
−xS

‖yNR−xS‖
2

]T
∈ RNR×2,

for s = 1, 2, . . . ,Ns

• R , bdaig
{
RT

s Rs , 1 ≤ s ≤ NS

}
∈ R3NS×3NS with

RS =
[
2ζTs Bs1 I

]
∈ R2×3.

• M =
[
B11 0 0 B21 0 0 . . . BNS

1 0 0
]T ∈

R3NS×NR
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Greedy Algorithm Performance

• Under the above stated assumptions and when ϑ1 = ϑ2 = ϑ

1. Estimates are unbiased
2. Covariance matrix C = ϑ2

12
R + σ2MΓMT

• Two terms representing to quantization error and error due to

shadowing.

• Smaller grid size and shadowing variance result in better

performance.
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• When ϑ1 6= ϑ2 transmit power etimates are unbiased

• Bias of sth transmitter is

E {∆Ps} = κ́
η

24
(ϑ21 − ϑ22)1TBsτ , (9)

where τ ∈ RNR×1, τ r =
(y r,1−xs,1)

2−(y r,2−xs,2)
2

‖y r−xS‖4
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Cramér Rao Bound

CRB = σ2
(
DTΓ−1D

)−1
, where D ∈ RNR×3NS with

D ij = d0
10

1
10

[Ps−µi (Υ)]

‖y i − x s‖η


1 for j mod 3 = 1

κ́η
(y i,1−xs,1)

‖y i−xs‖
2 for j mod 3 = 2, s =

⌈
j
3

⌉
κ́η

(y i,2−xs,2)

‖y i−xs‖
2 for j mod 3 = 0,
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Cramér Rao Bound

• For any unbiased estimator,

• E
{
‖x s − x̂ s‖2

}
≥
[
J−1

]
3s−1,3s−1

+
[
J−1

]
3s,3s

• E
{(

Ps − P̂s

)2}
≥
[
J−1

]
3s−2,3s−2

• No e�cient estimator exists

• Signal model is not a�ne in the parameters
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Spectral map estimation error - Sensor Location

• There is an exact match between measured value and

reconstructed map at sensor locations

φ̂(y r ) = µ(y r ; Υ̂) + gy r ξ̂ (10)

= µ(y r ; Υ̂) + ξ̂[r ] (11)

= φ[r ] (12)
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More De�ntions

• Gradient of the path loss component,

du =
(
dµ(u;Υ̂)

dΥ̂

)
Υ̂=Υ

=
[
du1 du2 . . . duNS

]
∈ R3NS×1

with dus = m̊us

[
1 ηκ́(u−xs)T

‖u−xs‖2

]T
∈ R3×1 and

m̊us = d0
10

1
10

[Ps−µ(u;Υ)]

‖u−xs‖η

• Ku = bdiag
{

1
m̊us

dusd
T
us , 1 ≤ s ≤ NS

}
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Map Error at an arbitrary point u

• Mean error is
1
2 tr
{
C
(
Ku −

∑NR

r=1 gu [r ]K y r

)}
− 1

2κ́{d
T
uCdu + 1

2κ́g
T
udiag

{
DCDT

}
• Mean square error(

du −DTΓ−1γu

)T
C
(
du −DTΓ−1γu

)
+σ2

(
1− γT

uΓ
−1γu

)
.
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Special Cases

• Single Transmitter
• Unbiased estimators

• Shadowing is uncorrelated
• Mean error = 1

2
tr {CKu} − 1

2κ́d
T

u
Cd u ,

• Mean square error = d
T

u
Cd u + σ2 for ∀u /∈ {y r}

NR

r=1
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Figure: Performance of algorithm with varying number of sensors Nr for
shadowing variances σ = 0 dB, 2 dB and 4 dB
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Conclusion

• Goal: Reconstruction of spatial power map using power

measurements at Nr sensors at known locations

• Unknown number of transmitters, transmit powers, Lognormal

shadowing

• Proposed a 2-step solution:

1. Greedy algorithm for ML estimation of transmitter locations
and powers

2. Exploit spatial correlation to reconstruct power map using
Kriging

• Bounds on error in estimation and Cramér Rao Bound for

estimation problem
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