Power Management Algorithms for a Network of Energy Harvesting Sensors

S Kumar Reddy, Chandra R Murthy

Dept. of ECE, Indian Institute Science, Bangalore, India

July 11, 2011

Outline

- Introduction
- 2 System Modeling
- First Stage: Duty Cycling
- Second Stage: Power Allocation
 - Simulation Results
 - Conclusions

Motivation

- Energy harvesting sensors (EHS) operate using the energy harvested from their surroundings
- No need of battery replacement, maintenance etc
- Theoretically infinite life time!
- Wireless Communication can deploy EHS at places that are hard to reach
- Applications
 - Monitoring (Habitat, Structural Health, Industrial Processes)
 - Body Area Networks (BAN)

Need for Power Management

- Energy sources Solar, Wind, Vibration, Thermal, RF
- The amount and nature (sporadicity) of the energy harvested is dependent on the source
 - High and predictable energy of solar Vs small and unpredictable energy of vibration
- Energy available is ∞ . But, power is limited/sporadic
- Power management algorithms schedule the utilization of the harvested power in order to get maximum benefit

System Model

- Single hop EHS network with K nodes, powered destination
- Single MCS transmission by each node
 - Transmission based on channel measurement
 - Leads to TCI
- Duty-cycling across nodes to prevent collisions

Goal

Find the optimum power allocation and duty-cycle to maximize the sum throughput subject to energy neutrality at each individual node.

Block Diagram of Each EHS Node

Figure: Power Flow Diagram

 The remaining circuitry (sensor) is assumed to consume a fixed power and hence not shown

Timing Diagram

Figure: Constant channel and constant power slots

Role of Supercapacitor

Figure: Truncated channel inversion

Assumptions

- Battery at each node: storage efficiency η
- Supercapacitor assumed perfectly efficient
- The load seen by battery within a CP slot is constant (due to the presence of supercapacitor)

Notation

Symbol	Meaning
$P_{h,i}$	Harvested power, <i>i</i> -th node, in some CP slot, $P_h = [P_{h,1}, \dots, P_{h,K}]$
$P_{a,i}$	Allotted power, i-th node, in some CP slot, $P_a = [P_{a,1}, \dots, P_{a,K}]$
$R_i(P_a)$	Average rate of i -th node in a CP slot with allotted power vector P_a
$\gamma_{m,i}(P_a)$	Channel gain threshold for xmission i-th node, allotted power vector Pa
$D_i(P_a)$	Duty cycle of i -th node in a CP slot with allotted power vector P_a
$F_{\gamma}(\cdot)$	CDF of the channel power gain
$f_{P_{h,i}}(\cdot)$	PDF of the harvested power at the <i>i</i> -th node

Proposed Approach

- First Stage: choose duty cycle D_i and gain threshold γ_{m,i} at each node as functions of P_a
 - Requires knowledge of sum power allotted at the nodes
 - Assumes identical channel statistics
 - Maximizes channel statistics-averaged sum throughput for the given P_a
- Second Stage: choose power allocation vector P_a as a function of the harvested power vector P_h
 - Requires knowledge of harvested power at each node
 - Tries to maximize the sum throughput over the harvested power statistics

First Stage Problem Setup

- To choose: duty cycle D_i and gain threshold γ_{m,i} at each node as functions of P_a
- Average data rate of the i-th node

$$R_i(P_a) = R_{on}D_i\left[1 - F_{\gamma}(\gamma_{m,i})\right]$$

Optimization problem

$$\max_{D_i \geq 0, \gamma_{m,i} \geq 0, \sum_i D_i = 1} \sum_{i=1}^K R_i(P_a)$$

Subject to the power constraint

$$D_i \int_{\gamma_{m,i}}^{\infty} \frac{P_0}{\gamma} f_{\gamma}(\gamma) d\gamma = P_{a,i}, \quad i = 1, \dots, K$$

First Stage Solution

• Using Lagrange mult. λ with $\sum_{i=1}^{K} D_i = 1$, can show

$$R_{on}\int_{\gamma_{m,i}}^{\infty}\left[1-rac{\gamma_{m,i}}{\gamma}\right]f_{\gamma}(\gamma)d\gamma=\lambda,\ i=1,2,\ldots,K$$

- The solution $\gamma_{m,i}$ in the above does not depend on $P_{a,i}$!
- Therefore $\gamma_m \triangleq \gamma_{m,i}$ is the same for all $i \Rightarrow D_i^{opt} = \frac{P_{a,i}}{\sum_{i=1}^K P_{a,i}}$
- The optimum channel gain threshold satisfies

$$\int_{\gamma_m}^{\infty} rac{f_{\gamma}(\gamma)}{\gamma} d\gamma = rac{\sum_{i=1}^K P_{a,i}}{P_0}$$

And the optimized sum throughput

$$R_{\Sigma}(P_a) \triangleq \sum_{i=1}^{L} R_i^{opt}(P_a) = R_{on} [1 - F_{\gamma}(\gamma_m)]$$

Second Stage Problem Setup

- Now lets optimize P_a
- Optimization problem

$$\max_{P_a(P_h)\geq 0} E\left\{R_{\Sigma}(P_a)\right\}$$

The expectation is over the joint distribution of P_h

• Subject to energy neutrality at node i, $1 \le i \le K$:

$$\int\limits_{0}^{\infty}\left(A_{i}P_{a,i}+(1-A_{i})\left(\pi_{h}+\frac{P_{a,i}-\pi_{h}}{\eta}\right)\right)f_{P_{h,i}}(\pi_{h})d\pi_{h}=E\left\{P_{h,i}\right\}$$

where $A_i = 1$ if $P_{a,i} < \pi_h$ and 0 otherwise.

In the above, the variable of integration π_h is the power harvested at the *i*-th node

Simplification of Second Stage

- Recall: $R_{\Sigma}(P_a)$ depends only on $\sum_{i=1}^{K} P_{a,i}$ (through γ_m)
- Now, when $\sum P_{h,i} > \sum P_{a,i}$, some nodes can deposit energy into battery
- When $\sum P_{h,i} < \sum P_{a,i}$, some nodes must draw energy from battery
- Energy efficient design: sum power energy neutrality **

$$\int_{0}^{\infty} \left(A P_{a,\Sigma} + (1 - A) \left(\pi_h + \frac{P_{a,\Sigma} - \pi_h}{\eta} \right) \right) f_{P_{h,\Sigma}}(\pi_h) d\pi_h = E \left\{ P_{h,\Sigma} \right\}$$

where A = 1 if $P_{a,\Sigma} < \pi_h$ and 0 otherwise.

Note: $\pi_h = \sum_{i=1}^K P_{h,i}$ is the sum power harvested and $f_{P_{h,\Sigma}}(\cdot)$ is its PDF

Tries to minimize wasteful cycling of energy through battery

Second Stage Solution

New optimization problem

$$\max_{P_{a,\Sigma}(P_{h,\Sigma})} R_{\Sigma}(P_a) \triangleq R_{on} [1 - F_{\gamma}(\gamma_m)]$$

subject to **

- Same as the "outer stage optimization" in our past work!
 - Working with a fictitious EHS which harvests the sum power, and under a sum-power energy neutrality constraint
- Optimal solution:

$$P_{a,\Sigma}^{opt} = \left\{ \begin{array}{ll} P_1 & \text{if } P_{h,\Sigma} \geq P_1; \\ P_2 & \text{if } P_{h,\Sigma} \leq P_2; \\ P_{h,\Sigma} & \text{if } P_2 < P_{h,\Sigma} < P_1. \end{array} \right.$$

Second Stage Solution (Cont'd)

For optimality, P₁ and P₂ should satisfy

$$\left. \frac{dR_{\Sigma}}{dP_{a,\Sigma}} \right|_{P_{a,\Sigma} = P_1} = \eta \left. \frac{dR_{\Sigma}}{dP_{a,\Sigma}} \right|_{P_{a,\Sigma} = P_2}$$

For energy neutrality, P₁ and P₂ should satisfy

$$\int_0^{P_2} [P_2 - \pi_h] f_{P_{h,\Sigma}}(\pi_h) d\pi_h = \eta \int_{P_1}^{\infty} [\pi_h - P_1] f_{P_{h,\Sigma}}(\pi_h) d\pi_h$$

Power Allocation for Each Node (1/2)

- Given $P_{a, \Sigma}^{opt}$, to find $P_{a,i}$ that satisfy EN at each node
- Recall sum power allocation rule:

$$P_{a,\Sigma}^{opt} = \left\{ \begin{array}{ll} P_1 & \text{if } P_{h,\Sigma} \geq P_1; \\ P_2 & \text{if } P_{h,\Sigma} \leq P_2; \\ P_{h,\Sigma} & \text{if } P_2 < P_{h,\Sigma} < P_1. \end{array} \right.$$

- Many ways of allotting $P_{a,i}$ s.t. $\sum P_{a,i} = P_{a,\Sigma}$
- Individual energy neutrality conditions

$$\int_{0}^{\infty} \left(A_{i} P_{a,i} + (1 - A_{i}) \left(\pi_{h} + \frac{P_{a,i} - \pi_{h}}{\eta} \right) \right) f_{P_{h,i}}(\pi_{h}) d\pi_{h} = E \left\{ P_{h,i} \right\}$$

where $A_i = 1$ if $P_{a,i} < \pi_h$ and 0 otherwise.

Power Allocation for Each Node (2/2)

Proposed allotment scheme:

$$P_{a,i} = \begin{cases} \begin{bmatrix} P_{h,i} - \frac{P_{h,\Sigma} - P_1}{K} - P_{e,i} \end{bmatrix}^+ & \text{if } P_{h,\Sigma} \ge P_1; \\ P_{h,i} + \frac{P_2 - P_{h,\Sigma}}{\eta K} & \text{if } P_{h,\Sigma} \le P_2; \\ P_{h,i} & \text{if } P_2 < P_{h,\Sigma} < P_1. \end{cases}$$

- Let $P_{e,i}^{(j)}$ denote the $P_{e,i}$ in CP slot j
- Update equation for $P_{e,i}$ is as follows:

$$P_{e,i}^{(j+1)} = \begin{cases} \begin{bmatrix} -P_{h,i} + \frac{P_{h,\Sigma} - P_1}{K} + P_{e,i}^{(j)} \end{bmatrix}^+ & \text{if } P_{h,\Sigma} \ge P_1; \\ P_{e,i}^{(j)} & \text{if } P_{h,\Sigma} \le P_2; \\ P_{e,i}^{(j)} & \text{if } P_2 < P_{h,\Sigma} < P_1. \end{cases}$$

Note: in the above, $P_{h,i}$, $P_{h,\Sigma}$ are the harvested powers in the j-th CP slot.

Simulation Result

Figure: Normalized throughput *Vs.* $E\{P_h\}$, for $\eta=0.8$, K=10. Harvested power uniformly distributed between $[0, 2E\{P_h\}]$

Conclusions

- We solved duty cycling and power allocation problems of an EHS network
- The model proposed here is generic and can be used with several performance metrics
- Future work includes solving the optimization problem of minimizing the energy storage requirement

The End

Thank you very much! Questions?

