Journal Watch IEEE Transactions on Information Theory March 2014

Geethu Joseph

SPC Lab, IISc

April 12, 2014

Blind Deconvolution Using Convex Programming Ali Ahmed, Benjamin Recht and Justin Romberg

- Problem: Recovering two unknown vectors, **w** and **x** from their circular convolution.
- Structural assumptions: $w, x \in \mathbb{R}^L$ are members of known subspaces whose dimensions are K and N

$$w = Bh, \quad x = Cm.$$

- Observations: $\mathbf{y} = \mathbf{w} * \mathbf{x}$, $\mathbf{y}[l] = \sum_{l'=1}^{L} \mathbf{w}[l'] \mathbf{x}[L l']$.
- DFT of y is related to hm^{*} through a linear transform A which depends on B and C,

$$\hat{\mathbf{y}} = \mathbf{F}\mathbf{y} = \mathcal{A}(\mathbf{hm}^*)$$

 A linear inverse problem over the (non-convex) set of rank-1 matrices.

Blind Deconvolution Using Convex Programming Approach and Results

- Convexify the problem using the nuclear norm, as a proxy for rank, $\min \|\boldsymbol{X}\|_*$ subject to $\hat{\boldsymbol{y}} = \mathcal{A}(\boldsymbol{X})$.
- Condition for the unique solution is \boldsymbol{hm}^* when
 - 1. **B** is an arbitrary deterministic $L \times K$ matrix with orthonormal columns,
 - 2. entries of \boldsymbol{C} are iid, $\boldsymbol{C}[I, n] \sim \mathcal{N}(0, L^{-1})$,
 - maximum of N and K is almost on the order of L
 - basis vectors of \boldsymbol{w} are spread out in the frequency domain
- Guarantees for recovery in the presence of noise, for the above model.
- Application: Multipath Channel Protection Using Random Codes, $L \log^3 L \gtrsim N + K$.

On the Theorem of Uniform Recovery of Random Sampling Matrices

Joel Andersson and Jan-Olov Strömberg

• Suppose the RIC of order 2s, δ_{2s} of a sensing matrix $\mathbf{A} \in \mathcal{C}^{m \times N}$ satisfies

$$\delta_{2s} < rac{4}{\sqrt{41}} pprox 0.62$$

every s-sparse vector $\mathbf{x} \in \mathcal{C}^N$ is recovered by l_1 -minimization.

- This is an improvement of the best known result, which had $\delta_{2s} < 0.4931.$
- Improved version of result which is not linear in s,

$$\delta_{2s} = \begin{cases} \max\left\{\sqrt{\frac{4-5/s}{9-5/s}}, \frac{4}{\sqrt{41}}\right\}, & 2 \le s, 5 \mod s \ne 0\\ \frac{2}{3}, & 2 \le s, 5 \mod s \ne 0 \end{cases}$$

*ロ * * ● * * ● * * ● * ● * ● * ●

On the Theorem of Uniform Recovery of Random Sampling Matrices

Let D ⊂ ℝ^d, ν a probability measure on D, {ψ_j}^N_{j=1} is a bounded orthogonal system of complex-valued functions on D if ∀j, k ∈ [N]

$$\int_{\mathcal{D}} \psi_j(t) \overline{\psi_k(t)} d\nu(t) = \delta_{jk} \quad \text{and} \quad \|\psi_j\|_{\infty} \leq K.$$

- A ∈ C^{m×N} be a random sampling matrix associated to a bounded orthonormal system,
 - i.e., a_{lk} = ψ_k(t_l) and {t₁, t₂,..., t_m} ⊂ D are selected independently at random with respect to ν
 - Eg., random partial Fourier matrix, $a_{lk} = \frac{1}{\sqrt{N}} \exp\{-2\pi i lk/N\}$
- Conditions on *m*, *K*, *n* for guarantees on the effective RIC of $\mathbf{A}, \, \tilde{\delta}_s \leq \delta$ when $K \geq 1$.

Other Papers

- A Diversity Analysis for Distributed Interference Alignment Using the Max-SINR Algorithm
 - T. Xu and X.-G. Xia
- Interference Channels With Half-Duplex Source Cooperation
 - R. Wu, V. M. Prabhakaran, P. Viswanath, and Y. Wang
- Degrees of Freedom for a MIMO Gaussian K-Way Relay Channel: Successive Network Code Encoding and Decoding
 - N. Lee and J. Chun
- Efficient Capacity Computation and Power Optimization for Relay Networks

(ロト・日本・モン・モン・モー・ション・ション・

- F. Parvaresh and R. Etkin
- Delay-Limited Cooperative Communication With Reliability Constraints in Wireless Network
 - R. Urgaonkar and M. J. Neely