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Distributed Parameter Estimation With Quantized
Communication via Running Average

Shanying Zhu, Yeng Chai Soh, and Lihua Xie

• Estimate a deterministic unknown θ over sensor network
• Strongly connected directed graph
• Quantized communication

• Model: yi = θ + wi

• wi ∼ N (0, σ2)

• Approach:

xi (t + 1) = x̂i (t) + α ∑
j∈Ni

aij [Q (x̂j(t))−Q (x̂i (t))]

x̂i (t) = xi (t) + εi (t)

• Goal: Design εi (t) such that xi (t)→MVU estimate



Distributed Parameter Estimation With Quantized
Communication via Running Average

Algorithm

• Compensation mechanism related with the left eigenvector
corresponding to zero eigen value of Laplacian of the graph, ω

• Distributed algorithm: inter-winding two stages at each
node i

• Stage 1: Receive the estimates of ωj for all j ∈ Ni ; update ωi
• Stage 2: compute εi (t) using estimate in stage 1.

• Convergence analysis
• In mean square and almost sure sense



Optimal Estimation for Discrete-Time Linear Systems in
the Presence of Multiplicative and Time-Correlated

Additive Measurement Noises
Wei Liu

• Problem: State estimation for discrete-time linear systems

State evolution: xk+1 = Akxk + wk + Fkuk

Measurement: yk =

(
Ck +

N

∑
µ=1

C̃µ,k ζµ,k

)
xk + vk + Gkuk

Measurement noise: vk+1 = Hkvk + εk

• Approach: Measurement differencing method

zk = yk −Hk−1yk−1

zk = φkxk−1 + v ∗k + u∗k

where v ∗k and u∗k are uncorrelated



Optimal Estimation for Discrete-Time Linear Systems in
the Presence of Multiplicative and Time-Correlated

Additive Measurement Noises
Algorithm

• Optimal estimator for xk using {yt}k
t=1 is same as that using

{zt}k
t=1

• Main result: MSE optimal linear estimator for system state.
• Advantages:

• Does not require computing the inverse of state transition
matrix

• Recursive implementation: time-independent computation and
storage load



Signal Recovery on Graphs: Variation Minimization
Siheng Chen, Aliaksei Sandryhaila, José M. F. Moura, and Jelena Kovačević
• Problem: Recover the graph signals residing on the graph

G = (V ,A): X =
[
x (1) x (2) . . . x (L)] ∈ RN×L

• Measurements: T = X + W + E
• W : noise with entries upper-bounded by a small value
• E : sparse matrix

• Signals are smooth with respect to the representation graph G
• Optimization problem:

X̂ , Ŵ , Ê = argmin
X ,W ,E

α‖X − AX‖2
F + βrank(X ) + γ‖E‖0

subject to‖W ‖2
F ≤ ε2,TM = (X + W + E )M.

• Solved by relaxing l0 norm and rank to l1 norm and nuclear
norm using alternating direction method of multipliers

• Showed how signal inpainting, matrix completion, robust
principal component analysis, and anomaly detection all relate
to graph signal recovery



Distributed Kalman Filtering With Dynamic Observations
Consensus

Subhro Das and José M. F. Moura

• System model:

State evolution: xi+1 = Axi + vi

Sensor measurements: zn
i = Hnxi + rn

i , n = 1, . . . N

• Dimension of the local observations are different for different
agents

• Define pseudo-observations: ȳi =
1
N ∑n HT

n R−1
n zn

i

ȳi = Gxi +
1
N HTR−1ri

• Distributed Kalman filter with two subroutines:
1. Dynamic consensus on the pseudo-observations to estimate ȳi
2. Distributed filtering to estimate the states xi
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