Journal Watch:

IEEE Transactions on Signal Processing Aug 15 2015

Chethan Kumar A Signal Processing for Communications Lab Department of ECE, IISc

August 9, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 A Bayesian Approach for Adaptively Modulated Signals Recognition in Next-Generation Communications

・ロト・日本・モート モー うへぐ

Authors: Bin Li, Shenghong Li, Jia Hou, Jungiang Fu, Chenglin Zhao, and Arumugan Nallanathan.

Goal, System Model and Contributions

Goal : Jointly estimate variant fading channel gains and unknown modulation scheme.

System Model :

$$\begin{aligned} \alpha_n &= \mathsf{A}(\alpha_{n-1}) \\ c_n &= \mathsf{T}(\alpha_n) \\ z_n &= \mathsf{Z}(\alpha_n, \theta_n, c_n, w_{n,m}) \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contributions :

- Time variant fading channels modeled as DSMC.
- A sequential MAP paradigm is used : Bayesian predict-and-update scheme.
- Mapping rules : S2S and M2S

Poisson Group Testing: A Probabilistic Model for Boolean Compressed Sensing

(ロ)、(型)、(E)、(E)、 E) の(の)

Authors: Amin Emad and Olgica Milenkovic.

Goal and Contributions

Goal : To come up with Lower/Upper bounds on the number of tests required for finding the defectives using both non-adaptive and semi-adaptive algorithms.

Novelty : The number of defectives is modelled as truncated poisson distribution; Parmaterized with $\lambda(n)$ and n.

$$P_D(d) = c(n) \frac{\lambda(n)^d}{d!} exp^{-\lambda(n)}, 0 \le d \le n$$
(1)

Contributions

- Bridge the gap between combinatorial GT and probabilistic GT!
- Derived lower/upper bounds;For both non-adaptive and semi-adaptive algorithms.

Main results

TABLE I LOWER AND UPPER BOUNDS ON THE MINIMUM NUMBER OF MEASUREMENTS m USING NONADAPTIVE METHODS

TABLE II LOWER AND UPPER BOUNDS ON THE MINIMUM EXPECTED NUMBER (MEASUREMENTS m USING SEMI-ADAPTIVE METHODS

Theorem	Number of tests	Assumptions
Thm. 1	$m \ge (1-\epsilon)\lambda \log_2 n(1-o(1))$	$\lambda = o(n)$
		$\lambda = o(n),$
Thm. 2	$m \le e \lambda^{2+\epsilon} \log_2 n(1+o(1))$	$\lim_{n\to\infty}\lambda=\infty$
		$\lambda = o(n),$
Thm. 3	$m \le e \beta(n)^2 \lambda^2 \log_2 n(1+o(1))$	$0 < \lim_{n \to \infty} \lambda < \infty$
		$\lambda = o(n),$
Thm. 6	$m \le \frac{3}{\log_2 3} \lambda^{1+\epsilon} \log_2 n(1+o(1))$	$\lim_{n\to\infty} \lambda = \infty$
		$\lambda = o(n),$
Thm. 7	$m \leq \frac{3}{\log_2 3} \beta(n) \lambda \log_2 n(1+o(1))$	$0 < \lim_{n \to \infty} \lambda < \infty$
Δ		$\lambda = o(n),$
Thm. 10	$m \le 2\lambda^{1+\alpha} (\log n + c\beta \log^3 \lambda) (1+o(1))$	$\lim_{n\to\infty}\lambda=\infty$
	$m \leq 2(\beta \lambda)^{1+\gamma} (\log n + \tau \beta^2 \log^2(\beta \lambda))$	$\lambda = o(n),$
Thm. 11	(1+o(1))	$0 < \lim_{n \to \infty} \lambda < \infty$

Theorem	Number of tests	Assumptions
Thm. 8	$\bar{m} > \lambda \log_2 \frac{n}{\lambda} (1 + o(1))$	$\lambda = o(n)$
	$-\log_2 e \frac{\lambda^4}{n^2}$	
Thm. 8	$\bar{m} > \lambda \log_2 \tfrac{n}{\lambda} (1 + o(1))$	$\lambda = o\left((n^2 \log_2 n)^{\frac{1}{3}}\right)$
Thm. 9	$\bar{m} \leq \frac{e}{\log_2 e} \lambda \log_2 \frac{n}{\lambda} (1+o(1))$	$\lambda = o(n)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

 A Bayesian Approach for Nonlinear Equalization and Signal Detection in Millimeter-Wave Communications

Authors: Bin Li, Chenglin Zhao, Mengwei Sun, Haijun Zhang, Zhang Zhou, and Arumugam Nallanathan.

・ロト・日本・モート モー うへぐ

System Model

System Model :

Problem Statement :

• Recover x_k from the received signal y_k , Where

$$x_k = g(x_k) + n_k$$
, k=0,1,.....K-1

Contributions :

- Proposed a joint detection scheme: address the nonlinear distortion and the frequency selective multipath fading in the receiver end.
- Designed a nonlinear equalization scheme for mm-wave systems.

Nonlinear Equalization and Signal Detection

Local linearization of observations

$$\begin{aligned} x_k &= \mathfrak{f}(x_{k-1}) + u_k \\ y_k &= \mathfrak{g}(\mathfrak{f}(x_{k-1})) + \frac{\partial \mathfrak{g}(x_k)}{\partial x_k} [x_k - \mathfrak{f}(x_{k-1})] + n_k \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sequential Nonlinear Equalization

$$p(x_k|y_{0:k}) = \sum_i w_k^{(i)} \,\delta(x - x_k^{(i)}) \\ x_k^{(i)} \sim \pi(x_k|y_{0:k}, x_{0:k-1}^{(i)})$$

Resource Allocation for Multiuser Improved AF Cooperative Communication scheme

Authors: Hanan Al-Tous and Imad Barhumi.

System Model

System Model :

Fig. 1. System model: AF multiple users system.

$$R_{AF}^{(i)} = 0.5W_i \log_2(1 + \frac{\Gamma_{SD}^{(i)} + \Gamma_{AF}^{(i)}}{\Gamma}); R_{SD}^{(i)} = (W - W_i) \log_2(1 + \frac{D_i}{W - W_i})$$
$$R^{(i)} = R_{AF}^{(i)} + R_{SD}^{(i)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal and Contributions

Goal : To maximize the sum-rate of multi-user AF relay assisted network in the presence of source-destination direct links.

 $\textbf{Case 1}: \ \textbf{Flat fading channel}$

$$\begin{array}{ll} \max_{P,W} & \sum_{i \in \mathcal{I}} R^{(i)} \\ \text{subject to} & \sum_{i \in \mathcal{I}} P_R^{(i)} \leq P_{max}^{(R)} \\ & 0 \leq W_i \leq W \quad , i \in \mathcal{I} \\ & P_R^{(i)} \geq 0 \quad \forall i \in \mathcal{I} \end{array}$$

Case 2 : Frequency-selective fading channel

Proposed a 4 step algorithm.

Convergence/Optimality : Stackelberg game assosciated with a potential function.

Other interesting papers

- Power and rate optimization for visible light communication system with light constraints
 Authors : Chen Gong, Shangbin Li, Qian Gao, and Zhengyuan Xu
- Joint Resource Allocation and User Association for SVC Multicast Over Heterogeneous Cellular Networks
 Authors : Hao Zhou, Yusheng Ji, Xiaoyan Wang, and Baohua Zhao

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <