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Diversity and Multiplexing Gain

Diversity and Multiplexing gain for a block fading Rayleigh MIMO

system are defined as

d , lim
SNR→∞

−∂ log Pe

∂ log SNR

r , lim
SNR→∞

∂R
∂ log SNR

Diversity can be obtained by either Rx diversity or Tx diversity or both.

E.g., MRC Rx diversity = Nr, MRT Tx diversity = Nt

Rx diversity based schemes result in a maximum diversity of NrNt.

Can we get better than d = NrNt ?
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Alamouti Scheme- I

2 Tx antenna is needed. Any number of Rx antennas is supported.

For ith Rx antenna, the received vector is represented as

[y1i y2i] = [h1i h2i]

 x1 −x∗2

x2 x∗1

+ [n1i n2i]

where [h1i h2i] represent the channel gains from 2 Tx ant. to ith Rx ant.
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Alamouti Scheme- II

The decoder estimates the symbols as

x̂1 = h∗1iy1i + h2iy∗2i

x̂2 = h∗2iy1i − h1iy∗2i
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Alamouti Scheme- III

The signal model can be equivalently written as y1i

y∗2i

 =

√
kρ
2

 h1i h2i

h∗2i −h∗1i

 x1

x2

+

 n1i

n∗2i

 , (1)

y′ =
√

kρ
2

H̃x + n′

Equivalent channel matrix H̃ is an orthogonal matrix 1.

This scheme achieves full diversity NrNt.

1See Exercise 9.4 in [8]
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Tx Diversity Schemes

Scenario CSI Condition Maximum Diversity Order References

d

SIMO CSIR Nr [4]

SIMO CSIR, ˆCSIT 2Nt,∞∗ [6, 3]*

MISO CSIR Nt [2, 7]

MISO ˆCSIR, ˆCSIT N2
t (N2

t + Nt + 1) + Nt [9]

MIMO CSIR NtNr [11]

MIMO ˆCSIR NtNr

[
rTc

Tc−Ltr

]
[10]

MIMO CSIR,CSIT ∞ [1]

MIMO CSIR, ˆCSIT NrNt(NrNt + 2) [1]

MIMO ˆCSIR, ˆCSIT 2NrNt [1]

Table : Summary of maximum diversity order in Rayleigh fading MIMO Channels.
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Diversity-Multiplexing Gain Trade off

Tse and Viswanath [8] had shown that, there exists a trade-off between

Diversity and Multiplexing gain that can be achieved.

A certain combinations of (r, d) is only possible for the given (Nr,Nt)

configuration.

(d, r) = (k, (Nt − k)(Nr − k)), k = 0, 1, . . . ,min(Nr,Nt)

Alamouti scheme operates at one of the operating points (NrNt, 0).

To realize other operating points, new codes can be designed or Tx

precoding can be done.
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Channel inversion in SIMO

Consider the SIMO channel

y =

√
kρ
Nt

hx + n

where ρ refers to total Tx power, k is a constant to ensure average power

constraint.

Since ‖h‖2 is a χ2
2d random variable, E

[
1
‖h‖2

]
= 1

2(d−1) is finite.

One can choose k = 1
‖h‖2 to obtain equivalent AWGN channel at the Rx,

⇒ d =∞.

This is not possible for SISO case since average Tx power is not finite.
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Channel inversion in MIMO

For the MIMO channel also one can invert the channel by choosing precoding

P matrix suitably. That is,

y =

√
ρ

Nt
HPx + n

Let P =
√

Nt
ρ H† where H† refers to the pseudo-inverse of H.

E[xHPHPx] = ‖x‖2 tr[PHP]

min(Nr,Nt)
=

‖x‖2

min(N − r,Nt)
E

[∑
i

1
σ2

i

]
which is not finite for Rayleigh block fading channel since the smallest

eigenvalue of HHH is χ2
2 distributed.

NOTE: Mean value of inverse of χ2
2 is not finite.
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Tx Diversity using Precoding

Recall that the effective channel matrix H̃ is orthogonal.

Use P = H̃H . That is,

x̂ =

√
kρ
Nt

H̃Px + n =

√
kρα2

Nt
x + n (2)

where α = |h1|2 + |h2|2 + . . .+ |hd|2 is a χ2
2d random variable.
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Orthogonality of H̃- I

Lemma 1
The equivalent channel matrix constructed for real square O-STBC is

orthogonal.

Proof: The two equivalent representations of the received vector y in terms of

h and x can be written as

y =

√
kρ
Nt

Xh =

√
kρ
Nt

H̃x (3)
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Orthogonality of H̃- II

Multiplying by XT on both sides, we get

αh = XTH̃x

where XTX = αI.

There exists a linear transformation between h and x which indicates that

the columns of H̃ are linearly independent.
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Orthogonality of H̃- III

Due to the structure of O-STBC codes, X1 and X2 are orthogonal

matrices by construction. Moreover, it can be shown that

xT
2,jx1,i = −xT

2,ix1,j and xT
1,ix2,i = xT

1,jx2,j [5]. That is,

yT
1 y2 = hTXT

1 X2h =
∑

i

∑
j

hihjxT
1,ix2,j =

∑
i

h2
i xT

1,ix2,i = xT
1,ix2,i

∑
i

h2
i ,

(4)

yT
1 y2 = xT

1
(
H̃TH̃

)
x2. (5)
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Orthogonality of H̃- IV

Eqns. (4) and (5) are equal, if and only if H̃ is orthogonal and

hT
i hi = hT

j hj.

Note that, the converse part is true since one of the columns of X1 is

same as x1 and one of the columns of X2 is same as x2.

�
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Proposed Precoder: Assumptions

Only block fading Rayleigh channels are considered.

CSI is available only at the Tx.

Signalling is assumed to use orthogonal STBC with energy normalized

constellations.

Nr > 1 for complex O-STBC and Nr > 2 for real O-STBC.
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Proposed Precoder - I

Theorem 1
The optimum precoding matrix for Tx diversity with CSIT in the case of

generic Nt × Nr MIMO channel is given by

P =

(
Nr∑

i=1

H̃i + ∆

)H

,

where ∆ is a correction matrix defined by

∆H =

(
Nr∑

i=1

H̃i

)−1
cI−

 Nr∑
i=1

Nr∑
j=1

H̃iH̃H
j
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Proposed Precoder - II

Proof:

c is a design parameter which controls average Tx power, and H̃i refers

to the equivalent channel matrix for ith Rx antenna.

First, we will prove that
Nr∑

i=1

∑
j6=i

H̃iH̃H
j (6)

is a diagonal matrix.
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Proposed Precoder - III

To prove (6), consider the product between the column vectors of H̃i and

H̃j.

< hl
j,h

m
i >= − < hm

i ,h
l
j >

< hl
i,h

l
j >=< hk

i ,h
k
j >

Nr∑
i=1

HH
i

Nr∑
j=1

Hj = γI

for some real value γ.
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Proposed Precoder - IV

To obtain infinite diversity order, we need

(
H̃1 + H̃2

) (
H̃1 + H̃2 + ∆

)H
= cI

⇒
(
H̃1 + H̃2

)
∆H = cI−

(
H̃1 + H̃2

) (
H̃1 + H̃2

)H
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Proposed Precoder - V

∆H =

(
2∑

i=1

H̃1

)−1
cI−

( 2∑
i=1

H̃i

)(
2∑

i=1

H̃i

)H


In general

∆H =

(
Nr∑

i=1

H̃i

)−1
cI−

( Nr∑
i=1

H̃i

)(
Nr∑

i=1

H̃i

)H
 , (7)

which concludes the proof.
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Average Tx Power Constraint - I

The average Tx power can be written as

Pavg =
kρ
Nt

Eh,x

xH

(
∆ +

Nr∑
i=1

H̃i

)(
∆ +

Nr∑
i=1

H̃i

)H

x

 .
Using the definition of ∆, it can written that(∆ +

Nr∑
i=1

H̃i

)(
∆ +

Nr∑
i=1

H̃i

)H
 =

∆∆H + cI + ∆

(∑
i

H̃i

)H
 .
(8)
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Average Tx Power Constraint - II

Since
∑

i H̃i is orthogonal we can write, ηI ,
(∑

i H̃i
) (∑

i H̃i
)H

.

The average Tx power can be simplified as follows. Using (7), it can be

written that

∆H =

(∑
i H̃i
)H

η

cI−

(∑
i

H̃i

)(∑
i

H̃i

)H


=
c− η
η︸ ︷︷ ︸
Γ

(∑
i

H̃i

)H

(9)
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Average Tx Power Constraint - III

Hence, ∆∆H can be written as

∆∆H = Γ2

(∑
i

H̃i

)(∑
i

H̃i

)H

(10)

Substituting (9) and (10) in (8), we get

PPH =

cI + (Γ2 + Γ)

(∑
i

H̃i

)(∑
i

H̃i

)H
 (11)
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Average Tx Power Constraint - IV

By choosing k = d−2
c2 , to meet the average power constraint, we get

Pavg =
ρ (d − 2)

c2Nt
Ex[xHx]

c2

d − 2
= ρ (12)

Hence, the receiver can use the fixed channel gain value of
√

kρc2

Nt
for

decoding the symbols.
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Simulation Results-I
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Figure : Comparison of 2× 2 Alamouti scheme with perfect CSIR and proposed

method with perfect CSIT.
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Simulation Results-II
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Figure : Comparison of 2× 2 Alamouti scheme with perfect CSIR and proposed

method with imperfect CSIT and 10 training symbols to estimate R for σh = 0.01.
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