Uniform Partitioning Theorem

Proof of Uniform Partitioning Theorem for LBC

T. Ganesan

gana@ieee.org

SPC Lab, Dept. of ECE

Mar 12th, 2011

Э

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

Properties of Uniform Codes

Uniform Partitioning Theorem

Outline

Preliminaries

Uniform Distance

Proof

Preliminaries

- 2 Properties of Uniform codes
 - Uniform Distance

- 3 Uniform Partitioning Theorem
 - Proof

Introduction •000 Preliminaries Properties of Uniform Codes

Uniform Partitioning Theorem

Linear Block Codes

- A Linear Block Code (LBC) is a collection of *n*-tuples from a finite or infinite alphabet from a field such that they form a group as per the *addition* defined in the field.
- The smallest Hamming weight of non-zero codeword is the *minimum distance* of the code.
- LBC can be partitioned into uniform sub-sets called *cosets*.
 - The 0th coset is a sub-code by itself.

Э

A B > A B > A B >

Introduction 0000 Preliminaries Properties of Uniform Codes

Uniform Partitioning Theorem

A B > A B > A B >

Э

Definitions

- Uniform set: A set is said to be uniform if the distance between any pair of elements is a constant.
- Maximal uniform set: A uniform set *U* is said to be maximal, if it is the largest possible set in terms of cardinality, for the given length and uniform distance.
- Non-trivial uniform set: A uniform set *U* is said to be non-trivial if it contains atleast 3 non-zero elements.

Uniform Partitioning Theorem

Pair-wise Partitioning Lemma(1)

Lemma I.1

For any LBC, there exists a disjoint code-word pair set (partitioning) such that distance between the code-word pairs is constant. In fact, there exists at least one code-word pair partition for every Hamming weight in the code's distance spectrum.

Introduction 000• Preliminaries Properties of Uniform Codes

Uniform Partitioning Theorem

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Э

Pair-wise Partitioning Lemma(2)-Proof

- Proof: Consider *dinD*(C), c₁ ∈ C, D(C) be the distance spectrum of C.
 - $\mathcal{D}_H(\mathbf{0},\mathbf{c}_1)=d.$
- Add any code-word $\mathbf{c}_2 \neq \mathbf{0}, \mathbf{c}_2 \neq \mathbf{c}_1$, to both.

•
$$\mathcal{D}_H(\mathbf{c}_2,\mathbf{c}_1+\mathbf{c}_2)=d.$$

• We can create disjoint code pairs with distance *d* for every Hamming weight in the distance spectrum of *C*.

• Preliminaries

- 2 Properties of Uniform codes
 - Uniform Distance

- 3 Uniform Partitioning Theorem
 - Proof

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Uniform Partitioning of LBC

• We seek to partition an LBC such that

$$C = \bigcup_{i=1}^{L} \mathbf{C}_i, \tag{1}$$

Э

such that $\mathbf{C}_i \cap \mathbf{C}_j = \{\phi\}$, $1 \le i, j \le L$, $i \ne j$, where *L* is the number of constituent uniform sub-sets and \mathbf{C}_i , i = 1, 2, ..., L are non-trivial uniform sub-codes.

• We focus on binary LBCs only.

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Even Uniform Distance(1)

Lemma II.1

The distance d_u *for any non-trivial uniform linear code* C_0 *is even.*

Moreover, the uniform code is linear if and only if $d_u = 2W_H(\mathbf{c}_0 * \mathbf{c}_1)$

for any two non-zero $\mathbf{c}_0, \mathbf{c}_1 \in \mathbf{C}_0$ *.*

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Even Uniform Distance(2)-Proof

Proof: Let C_0 be a linear uniform code with distance d_u . There exists

- $\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2 \in \mathbf{C}_0$ such that $\mathbf{c}_2 = \mathbf{c}_0 + \mathbf{c}_1$ and $\mathbf{c}_i \neq \mathbf{0}$ for i = 0, 1, 2.
- Consider the Hamming weight of **c**₂ :

$$\mathcal{W}_{H}(\mathbf{c}_{2}) = \mathcal{W}_{H}(\mathbf{c}_{0}) + \mathcal{W}_{H}(\mathbf{c}_{1}) - 2\mathcal{W}_{H}(\mathbf{c}_{0} * \mathbf{c}_{1})$$
(2)

$$d_u = 2[d_u - \mathcal{W}_H(\mathbf{c}_0 * \mathbf{c}_1)] \tag{3}$$

• To prove the converse, let C_0 be a uniform code with

$$d_u = 2\mathcal{W}_H(\mathbf{c}_0 * \mathbf{c}_1)$$
. Then,
 $\mathcal{W}_H(\mathbf{c}_0 + \mathbf{c}_1) = 2[d_u - \mathcal{W}_H(\mathbf{c}_0 * \mathbf{c}_1)] = d_u$,
and hence $\mathbf{c}_2 \in \mathbf{C}_0$

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Even Uniform Distance(3)

Lemma II.2

The uniform distance of a non-trivial linear uniform code and its even parity extension code are the same.

Proof: The even parity extension of a code results in code-words with even Hamming weight. From Lemma II.1, code-words in the linear uniform code all have an even weight. Hence, parity extension simply results in appending a 0 to the code-words, which does not change the distance property of the code.

Э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Existence Condition(1)

Lemma II.3

Let $\mathbf{c_0}, \mathbf{c_1}, \mathbf{c_2}$ belong to a uniform linear code with distance d_u and $\mathbf{c}_i \neq \mathbf{0}$, for i = 0, 1, 2. Then, $\mathbf{c_0} = \mathbf{c}_1 + \mathbf{c}_2$ if and only if $\mathcal{W}_H(\mathbf{c}_0 * \mathbf{c}_1 * \mathbf{c}_2) = 0$.

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Existence Condition(1)-Proof

Proof: Consider the sum $\mathbf{c_0} + \mathbf{c_1} + \mathbf{c_2}$. Using Lemma II.1, one can write

$$\mathcal{W}_{H}(\mathbf{c}_{0} + \mathbf{c}_{1} + \mathbf{c}_{2}) = d_{u} + d_{u} - 2\mathcal{W}_{H}(\mathbf{c}_{0} * (\mathbf{c}_{1} + \mathbf{c}_{2}))$$

$$= 2d_{u} - 2\mathcal{W}_{H}(\mathbf{c}_{0} * \mathbf{c}_{1} + \mathbf{c}_{0} * \mathbf{c}_{2}) = 2[d_{u} - d_{u} + 2\mathcal{W}_{H}(\mathbf{c}_{0} * \mathbf{c}_{1} * \mathbf{c}_{2})]$$

$$= 4\mathcal{W}_{H}(\mathbf{c}_{0} * \mathbf{c}_{1} * \mathbf{c}_{2})$$
(5)

which shows that if $\mathcal{W}_H(\mathbf{c}_1 * \mathbf{c}_2 * \mathbf{c}_3) = 0$, then $\mathbf{c}_0 + \mathbf{c}_1 + \mathbf{c}_2 = \mathbf{0}$. To prove the converse, let $\mathbf{c}_2 = \mathbf{c}_0 + \mathbf{c}_1$. Then,

$$\mathcal{W}_H(\mathbf{c}_0 \ast \mathbf{c}_1 \ast \mathbf{c}_2) = \mathcal{W}_H(\mathbf{c}_0 \ast \mathbf{c}_1 + \mathbf{c}_0 \ast \mathbf{c}_1) = \mathcal{W}_H(\mathbf{0}).$$

Э

Introduction 0000 Uniform Distance Properties of Uniform Codes

Uniform Partitioning Theorem

Existence Condition(2)

Corollary 1

If $W_H(\mathbf{c}_0 * \mathbf{c}_1 * \mathbf{c}_2) = d_u/4$, then $W_H(\mathbf{c}_0 + \mathbf{c}_1 + \mathbf{c}_2) = d_u$, where \mathbf{c}_0 , \mathbf{c}_1

and \mathbf{c}_2 belong to a uniform linear code \mathbf{C}_0 with atleast 8 code-words.

Follows directly from (5) and Lemma II.1.

Uniform Distance

Properties of Uniform Codes

Uniform Partitioning Theorem

Rate-1 Code Paritioning(1)

Lemma II.4

There exists a non-trivial uniform sub-code $\mathbf{C}_u \subset \mathbb{F}_2^n \ni$

$$d_{u} = \begin{cases} \frac{n}{2} & \text{if } n = 4k \\ \frac{n-1}{2} & \text{if } n = 4k+1 \\ \frac{n+2}{2} & \text{if } n = 4k+2 \\ \frac{n+1}{2} & \text{if } n = 4k+3, \end{cases}$$
(6)

イロト イポト イヨト イヨト

where $k \in \mathbb{N}, k \ge 1$. Moreover, subset $\mathbf{C}_0^F \in \mathbf{C}_u$ exists which spans a vector space with dimension at least 2.

Introduction 0000 Uniform Distance Properties of Uniform Codes

Uniform Partitioning Theorem

Rate-1 Code Paritioning(2)-Proof

Proof: Consider the cardinality for n = 4k,

- First, we show that a non-trivial uniform sub-code C_u ⊂ Fⁿ₂ exists with distance d_u given in (6) and then show that a linear subset C^F₀ can be obtained from this sub-code.
 - Let M_{n=4k+i} denote the cardinality of the uniform set with code-words of length n = 4k + i for k ≥ 1, and i = 0, 1, 2, 3.
- Hadamard matrices exist for n = 1, 2 and 4k [1].
 - ⇒ there exist uniform codes with distance d_u = n/2. i.e., M_{4k} ≥ n and d_u = n/2.

Uniform Partitioning Theorem

Rate-1 Code Paritioning(2)-Proof Continued

Consider the cardinality for n = 4k + 3,

- Hadamard code has the all zero vector as one of its columns.
- Hadamard code can be shortened by 1 bit without loss of the properties of the code.
 - $M_{4k+3} \ge n$ and $d_u = \frac{n+1}{2}$.
 - Moreover, for $d_u = \frac{n+1}{2}$ the Plotkin bound is known to achieve the equality for uniform codes.

$$M_{Plotkin} \leq \frac{2d_u}{n-2d_u},$$

• $M_{4k+3} = n+1$.

Uniform Partitioning Theorem

Rate-1 Code Paritioning(2)-Proof Continued

To compute a bound of the cardinality for n = 4k + 1,

- Consider appending any non-zero column of Hadamard code for
 n = 4k to the same code as [H_n|h_i]
- Each column of Hadamard code has n/2 non-zero values, half of the extended code has the same Hamming weight and the other half of the extended code-words have their Hamming weight increased by 1.
- n/2 code-words of the extended code with n = 4k + 1 have d_u = n-1/2.
 M_{4k+1} ≥ n/2.

Rate-1 Code Paritioning(2)-Proof Continued

To compute the cardinality for n = 4k + 2,

- Consider the 1 bit shortened code from n = 4k + 3. From Thm. 2 in [2], it follows that $M_{4k+2} \ge \left\lceil \frac{d_u M_{4k+3}}{n} \right\rceil = \left\lceil \frac{n+1}{2} \right\rceil$ and $d_u = \frac{n+2}{2}$. For n > 4, this lower bound is greater than or equal to 2.
- Thus, we have shown that a uniform sub-code of C_{μ} exists with even-valued d_{μ} given by (6) and that the cardinality of the sub-code is at least 2 for k > 1.
- Now, consider any two non-zero code-words and their sum. This creates a non-trivial uniform code.

Э

Introduction 0000 Uniform Distance Properties of Uniform Codes

Uniform Partitioning Theorem

Rate-1 Code Paritioning(2)-Proof Continued

- c₀, c₁, c₀ + c₁ and 0 can be used to form C^F₀, which is now a non-trivial linear uniform sub-code of Fⁿ₂ with uniform distance *d_u* given by (6).
- C₀^F has a cardinality of atleast 4 including the all zero code-word
 0. Hence, the dimension of the vector space spanned by C₀^F is at least 2.

Э

• Preliminaries

- Properties of Uniform codes
 - Uniform Distance

- **3** Uniform Partitioning Theorem
 - Proof

Properties of Uniform Codes

Uniform Partitioning Theorem

Uniform Partitioning Theorem

Theorem III.1

For a binary LBC C, if $\mathbf{C}_0 \triangleq \mathbf{C}_0^F \cap \mathcal{C}$ is non-trivial for some \mathbf{C}_0^F

satisfying the properties in Lemma II.4, the following hold:

 (i) C₀ and its cosets tile C and one can build a linear maximal uniform partitioning of C from the cosets of C₀,

(ii) The cardinality of C_0 is bounded as $2^2 \le |C_0| \le 2^{\lfloor \log_2 n + 1 \rfloor}$, and

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Properties of Uniform Codes

Uniform Partitioning Theorem

Uniform Partitioning Theorem - Continued

Theorem III.1 -Continued

(iii) $|\mathbf{C}_0| = 2^{j^*+1}$ if $j^* \ge 1$ is the largest integer such that (a) \mathbf{C}_0 has a

subset C_{j^*} with cardinality $j^* + 1$ and non-zero entries such that

$$\mathcal{W}_H(\mathbf{c}_0 * \mathbf{c}_1 * \ldots * \mathbf{c}_{j^*}) = \frac{d_u}{2^{j^*}},\tag{7}$$

where $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{j^*} \in \mathbf{C}_{j^*}$, and (*b*) For $l = 1, 2, \dots, j^* - 1$, for all subsets \mathbf{C}_l of \mathbf{C}_{i^*} with cardinality l + 1,

$$\mathcal{W}_H(\mathbf{c}_0 * \mathbf{c}_1 * \ldots * \mathbf{c}_l) = \frac{d_u}{2^l},\tag{8}$$

where, with a slight abuse of notation, $\mathbf{c}_0, \mathbf{c}_1, \ldots, \mathbf{c}_l \in \mathbf{C}_l$.

Proof

Properties of Uniform Codes

↓ □ ▶ ↓ @ ▶ ↓ E ▶ ↓ E ▶ ↓ E

Proof

- **Proof:** Note that, **C**₀ is linear and its cosets tile *C* as it is an intersection of *C* and a linear set.
- Let C₀^{max} represent a maximal linear uniform sub-code of C with the same uniform distance as C₀.
- There exists a unitary transform between the basis vectors of C₀^{max} and C₀. Therefore, without loss of generality, we can transform the code words in C₀^{max} such that it forms a superset of C₀ and preserves the uniform distance property.
 - That is, we have $\mathbf{C}_0 \subseteq \mathbf{C}_0^{\max}$.

Properties of Uniform Codes

Uniform Partitioning Theorem

Proof-Continued

- Consider any code word c ∈ C₀^{max}, c ∉ C₀. Now, c + C₀ forms a coset of C₀ and the coset belongs to C₀^{max} since it is linear.
- Thus, $C_0 \cup (C_0 + c)$ is still a linear uniform set.
 - One can now repeat this procedure of combining the cosets of C₀ to obtain C₀^{max}.
- Thus, there exists $C_0^{max} \supset C_0$ with the same uniform distance.

Э

A B > A B > A B >

Properties of Uniform Codes

Proof-Continued

- The bounds on the cardinality of C₀ follow from the arguments presented in Lemma II.4.
 - The lower bound follows from the fact that when C₀ is a non-trivial set.
 - The upper found follows from the fact that the number of elements is a power of 2 and using the Plotkin bound of *n* + 1.
- To find $|\mathbf{C}_0|$, it can be shown from (2) that

$$\mathcal{W}_{H}\left(\mathbf{c}_{0}+\mathbf{c}_{1}+\ldots+\mathbf{c}_{j^{*}}\right)=\sum_{k=1}^{j^{*}}2^{k}(-1)^{k+1}\binom{j^{*}}{k}\frac{d_{u}}{2^{k}},\quad(9)$$

Э

Properties of Uniform Codes

Proof-Continued

- Since $\sum_{k=1}^{n} (-1)^{k+1} {n \choose k} = 1$, the summation in (9) equals d_u .
 - This shows that the Hamming weight of the sum $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{j^*}$ is d_u (Due to Lemma II.3).
- Using a similar procedure, we can show the uniform distance property of any linear combination of the code-words
 - $c_0, c_1, \ldots, c_{j^*}.$
 - The cardinality of the set comprising all linear combinations of these *j*^{*} + 1 vectors is 2^{*j*^{*}+1}.

Proof

Properties of Uniform Codes

Uniform Partitioning Theorem

Uniform Partitioning - Examples

- Hamming (7,4) code : C₀ = {0, 1, 6, 7, 10, 11, 12, 13} and C₁ = {2, 3, 4, 5, 8, 9, 14, 15}.
 d_u = ⁿ⁺¹/₂ = 4
- MLSR $(6,3,3)_2$ code: $\mathbf{C}_0 = \{1,2,5,6\}$ and $\mathbf{C}_1 = \{0,3,4,7\}$.

•
$$d_u = \frac{n+2}{2} = 4$$

• Hadamard codes are themselves maximal uniform codes.

•
$$d_u = \frac{n}{2}$$

• MLSR $(9,4,3)_2$ code : $C_0 = \{0,2,9,11\}$

•
$$d_u = \frac{n-1}{2} = 4$$

Э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Properties of Uniform Codes

Uniform Partitioning Theorem

Code Partitioning Procedure

- Find code-words in C with Hamming weight d_u according to the code length n. Denote this sub-set as C_u.
- Find a sub-set of C_u that is closed by using the linearity conditions given in Theorem. Call this sub-set as C₀.
- Solution Now, C_0 and its cosets form a uniform partitioning of C.

Properties of Uniform Codes

Uniform Partitioning Theorem

References

J. H. Van Lint and R. M. Wilson,

A Course in Combinatorics,

Cambridge University Press, second edition, 2001.

A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith,

"A new table of constant-weight codes,"

IEEE Transactions on Information Theory, vol. 36, pp.

1344–1380, 1990.

Э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A