Performance Analysis and Training Optimization for Uplink Cellular Networks with Power Control and Channel Estimation Errors

SPC Lab, IISC Bangalore

November 1, 2013

Performance Analysis and Training Optimization for Uplink Cellu

Outline

- Quick Review: PPP Preliminaries
- Motivation
- System Model
 - Channel Model
 - Fractional Power Control
 - Assumptions
- Problem Statement
- Coverage Probability
- Ergodic Capacity
- Optimal Power Control and Training

• • = • • = •

• Poisson Point Processes (PPP)

- First contact distribution
- Thinning of PPP
- Slivnyak's theorem: Reduced palm distribution

Theorem

- Campbell's theorem
- Probability generating functional (PGFL)

- Uplink cellular network not being given adequate attention using stochastic geometric framework
- Stochastic geometry: A new tool
 - Takes into account the randomness present in cellular network
 - Provides simple mathematical tools for deriving network performance metrics
 - Gives useful design insights into the system
- Channel estimation: An important aspect
 - Channel estimation errors can't be ignored in practical systems
 - Need to optimize the training duration
- Uplink power control: To improve coverage
 - Optimal power control factor

同 ト イヨ ト イヨ ト 二 ヨ

System Model

- BS locations form PPP: ϕ_B with density λ_B
- MU locations form PPP: ϕ_M with density λ_M
- ϕ_M independent of ϕ_B
- Nearest neighbour connectivity
- Probability of Connection *p_c*:

$$p_c pprox 1 - \left(rac{3.5}{3.5 + rac{\lambda_M}{\lambda_B}}
ight)^{3.5}$$

- Observe the dependence of p_c on $\frac{\lambda_M}{\lambda_B}$
- BS serves a single MU in a given time frequency block
 - Only inter-cell interference, no intra-cell interference

伺 と く ヨ と く ヨ と

Channel Model

- Coherence time *L* symbols:
 - L_{τ} symbols: Training duration
 - $L L_{\tau}$ symbols: Data transmission
- Distance dependent path loss, $\alpha\gg 2$
- i.i.d. Rayleigh fading across users

• Fractional Power Control

- Power control both during training and data transmission
- Distance dependent fractional power control, $(R_u^\epsilon)^lpha$, $\epsilon \in [0,1]$
- $\epsilon = 0$: No power control and $\epsilon = 1$: Perfect path loss compensation
- ${\ \bullet\ }$ Baseline power is assumed to be μ^{-1}

- MU locations connected to any BS in a given time frequency block form a PPP: ϕ_m
 - The density of PPP ϕ_m is $\lambda = p_c \lambda_B$
 - Consequence of independent thinning (approximation for tractability)
- ② R_v for $v ∈ φ_m(λ)$ the distance of interfering MUs form their tagged BSs are assumed to be independent
 - Dependence between R_v for $v \in \phi_m(\lambda)$ is very weak
- No synchronization between training and data transmission phases among users is assumed
 - Generalized model
 - Captures the effect of pilot contamination

A + + = + + = + - =

Goal

- Derive an analytical expression for channel estimation error variance
- Oerive the uplink coverage probability expression for a typical MU
 - Simplify the coverage expression for various practically useful scenarios
 - Study the coverage behavior for against $L_{\tau},\,\lambda_B$ and SINR threshold, θ
- Oerive analytical expression for the ergodic capacity
- Solution Use ϵ_{opt} to find the optimal training duration $L_{\tau,opt}$

- 小田 ト ・日 ト 一日

Problem Statement

• Coverage Probability: The probability that typical BS achieves a SINR threshold, θ

$$P_c(\epsilon, \theta, L_{\tau}) = \mathbb{P}(\mathsf{SINR} > \theta)$$

• Ergodic Capacity: Average rate achieved by typical BS

$$C(\epsilon, L_{\tau}) = \frac{(L - L_{\tau})}{L} \mathbb{E}[\ln(1 + \text{SINR})]$$

• Optimal Power Control Factor, ϵ_{opt} and Optimal Training Duration, $L_{\tau,opt}$

$$\epsilon_{opt}, L_{ au,opt} = rg\max_{\epsilon,L_{ au}} \left(1 - rac{L_{ au}}{L}
ight) C(\epsilon,L_{ au})$$

- Consider typical BS and MU pair and the BS located at origin
- Invoke Slivnyak's theorem

Uplink Training

- Typical MU sends L_{τ} length training sequence
- The BS obtains an estimate \hat{h}_u of the channel h_u
- Oplink Data Transmission
 - MU transmit data for rest $L L_{\tau}$ symbol durations
 - BS makes use of \hat{h}_u to estimate the transmitted symbol

Channel Estimation Error

• Channel estimation error variance, $\sigma_{e|r_u}$ conditioned on the first contact distance, $R_u = r_u$

$$\sigma_{e|r_u}^2 = \frac{1}{1 + \frac{\mu^{-1} r_u^{\alpha(\epsilon-1)} L_\tau}{\mu^{-1} \mathcal{I}_v^\tau + \sigma_{n_\tau}^2}}$$

where $\mathcal{I}_{v}^{\tau} = \mathbb{E}\left[\sum_{v \in \phi_{m}(\lambda)} (R_{v}^{\epsilon})^{\alpha} D_{v}^{-\alpha} |h_{v}q_{v}|^{2}\right]$ is the interference term and $\sigma_{n_{\tau}}^{2}$ is the noise variance.

• Using Campbell's theorem, computing \mathcal{I}_{v}^{τ}

$$\mathcal{I}_{v}^{\tau} = \int_{0}^{\infty} 2\pi \lambda (r_{v}^{\epsilon})^{\alpha} \frac{r_{u}^{-\alpha+2}}{\alpha-2} f_{R_{v}}(r_{v}) \mathrm{d}r_{v}$$

Coverage Probability

The uplink coverage probability for a typical MU is given by

$$P_{c}(\epsilon, \theta, L_{\tau}) = \int_{0}^{\infty} \exp\left(-\frac{\theta \sigma_{e|r_{u}}^{2}}{1 - \sigma_{e|r_{u}}^{2}}\right) \exp\left(-\frac{\mu \theta r_{u}^{\alpha(1-\epsilon)} \sigma_{n_{d}}^{2}}{1 - \sigma_{e|r_{u}}^{2}}\right) \mathcal{L}_{I_{v}^{d}}\left(\frac{\theta r_{u}^{\alpha(1-\epsilon)}}{1 - \sigma_{e|r_{u}}^{2}}\right) f_{R_{u}}(r_{u}) \mathrm{d}r_{u}$$

• $f_{R_u}(r_u)$ is the nearest neighbour distance distribution • $\mathcal{L}_{I_v^d}(s)$ is the Laplace transform of the interference calculated at $s = \frac{\theta r_u^{\alpha(1-\epsilon)}}{1-\sigma_{e|r_u}^2}$ $\mathcal{L}_{I_v^d}(s) = \exp\left(-2\pi\lambda\int_{r_u}^{\infty}\left(1-\mathbb{E}_{R_v}\left[\frac{1}{1+s(R_v^\epsilon)^{\alpha}d_v^{\alpha}}\right]\right)d_v \mathrm{d}d_v\right)$

Figure: SINR threshold, θ vs Coverage probability, P_C , for $\frac{\mu^{-1}}{\sigma_{n_{d}^{2}}^{2}} = \frac{\mu^{-1}}{\sigma_{n_{\tau}^{2}}^{2}} = 20 \text{dB}, \lambda_{B} = 0.05/m^{2}, \ \lambda_{M} = 0.3/m^{2}, \ \lambda_{B} = 0.05/m^{2},$ $L_T = 10$ symbols and $\alpha = 3.5$

Figure: Training duration, L_{τ} vs Coverage probability, P_C , for $\frac{\mu^{-1}}{\sigma_{n_{\sigma}^2}} = \frac{\mu^{-1}}{\sigma_{n_{\tau}^2}} = 20$ dB, $\lambda_B = 0.05/m^2$, $\lambda_M = 0.3/m^2$, $\alpha = 3.5$ and $\theta = 1$

Figure: BS Density, λ_B vs Coverage probability, P_C , for $\frac{\mu^{-1}}{\sigma_{n_d^2}} = \frac{\mu^{-1}}{\sigma_{n_\tau^2}} = 20$ dB, $\lambda_M = 0.3/m^2$, $\theta = 1$, $L_T = 10$ symbols and $\alpha = 3.5$

伺 と く ヨ と く ヨ と

Figure: Fractional power control parameter, ϵ vs Coverage probability, P_C , for $\frac{\mu^{-1}}{\sigma_{n_d^2}} = \frac{\mu^{-1}}{\sigma_{n_\tau^2}} = 20$ dB, $\lambda_M = 0.3/m^2$, $\theta = 1$, $L_T = 10$ symbols

・何・ ・ヨ・ ・ヨ・ ・ヨ

Ergodic Capacity

• The **average achievable rate** in the uplink for the typical MU-BS pair

$$C_{\text{eff}}(\epsilon, L_{\tau}) \triangleq \left(1 - \frac{L_{\tau}}{L}\right) C(\epsilon, L_{\tau}),$$

where $C(\epsilon, L_{\tau}) \triangleq \mathbb{E}[\ln(1 + \mathsf{SINR})]$ is

$$\begin{split} \mathcal{C}(\epsilon, L_{\tau}) &= \int_{r_u > 0} f_{R_u}(r_u) \int_{t > 0} \exp\left(-\frac{(e^t - 1)\sigma_{e|r_u}^2}{1 - \sigma_{e|r_u}^2}\right) \\ &\exp\left(-\frac{\mu(e^t - 1)r_u^{\alpha(1-\epsilon)}\sigma_{n_d}^2}{1 - \sigma_{e|r_u}^2}\right) \mathcal{L}_{l_v^d}\left(\frac{(e^t - 1)r_u^{\alpha(1-\epsilon)}}{1 - \sigma_{e|r_u}^2}\right) \mathrm{d}t \mathrm{d}r_u, \end{split}$$

where $\mathcal{L}_{\mathcal{I}_{v}^{d}}(s)$ is **Laplace transform** of the interference term, evaluated at $s = \frac{(e^{t}-1)r_{u}^{\alpha(1-\epsilon)}}{1-\sigma_{e|r_{u}}^{2}}$.

Figure: Fractional power control parameter, (ϵ), vs Rate, for $\frac{\mu^{-1}}{\sigma_{n_{\tau}^2}} = \frac{\mu^{-1}}{\sigma_{n_{\tau}^2}} = 20$ dB, $L_{\tau} = 10$, L = 100, $\lambda_B = 0.05/m^2$, $\lambda_M = 0.3/m^2$, $\alpha = 3.5$ and $\theta = 1$

Optimal Fractional Power Control Parameter, \(\epsilon_{opt}\)

$$\epsilon_{opt} = \arg \max_{\epsilon} C(\epsilon, L_{\tau})$$

• Optimal Training Duration, $L_{\tau,opt}$ symbols

$$\mathcal{L}_{ au,opt} = rg\max_{\mathcal{L}_{ au}} \left(1 - rac{\mathcal{L}_{ au}}{\mathcal{L}}
ight) \mathcal{C}(\epsilon_{opt}, \mathcal{L}_{ au})$$

- Use numerical computations to find ϵ_{opt} first
- Use ϵ_{opt} to numerically compute $L_{\tau,opt}$

Figure: Training duration, L_{τ} vs Optimal fractional power control factor, ϵ_{opt} , for $\frac{\mu^{-1}}{\sigma_{n_d^2}} = \frac{\mu^{-1}}{\sigma_{n_{\tau}^2}} = 20$ dB, $\lambda_M = 0.3/m^2$, $\alpha = 3.5$ and $\theta = 1$

Figure: Optimal training duration, $L_{\tau,opt}$ vs Coherence duration, L, for $\frac{\mu^{-1}}{\sigma_{n_{d}^{2}}} = \frac{\mu^{-1}}{\sigma_{n_{\tau}^{2}}} = 20$ dB, $\lambda_{M} = 0.3/m^{2}$, $\alpha = 3.5$ and $\theta = 1$

Figure: Optimal Rate vs Coherence duration, L, for $\frac{\mu^{-1}}{\sigma_{n_d^2}} = \frac{\mu^{-1}}{\sigma_{n_\tau^2}} = 20$ dB, $\lambda_B = 0.06/m^2$, $\lambda_M = 0.3/m^2$, $\alpha = 3.5$ and $\theta = 1$

伺 ト イヨト イヨト

Thank You

< ロ > < 回 > < 回 > < 回 > < 回 > Performance Analysis and Training Optimization for Uplink Cellu

æ