Coverage Analysis and Training Optimization for Uplink Cellular Networks with Practical Channel Estimation

SPC Lab, IISC Bangalore

April 5, 2014

Outline

- Quick Review: PPP Preliminaries
- Motivation
- System Model
 - Channel Model
 - Fractional Power Control
 - Assumptions
- Problem Statement
- Coverage Probability
- Area Spectral Efficiency
- Optimal Power Control and Training

PPP Preliminaries

- Poisson Point Processes (PPP)
 - First contact distribution
 - Thinning of PPP
- Theorem
 - Campbell's theorem
 - Probability generating functional (PGFL)

Motivation

- Uplink cellular network not being given adequate attention using stochastic geometric framework
- Stochastic geometry: A new tool
 - Takes into account the randomness present in cellular network
 - Provides simple mathematical tools for deriving network performance metrics
 - Gives useful design insights into the system
- Channel estimation: An important aspect
 - Channel estimation errors can't be ignored in practical systems
 - Need to optimize the training duration
- **Uplink power control**: To improve coverage
 - Optimal power control factor

System Model

- BS locations form PPP: ϕ_B with density λ_B
- MU locations form PPP: ϕ_M with density λ_M
- ϕ_M independent of ϕ_B
- Nearest neighbour connectivity
- Probability of Connection p_c:

$$ho_c pprox 1 - \left(rac{3.5}{3.5 + rac{\lambda_M}{\lambda_B}}
ight)^{3.5}$$

- Observe the dependence of p_c on $\frac{\lambda_M}{\lambda_B}$
- BS serves a single MU in a given time frequency block
 - Only inter-cell interference, no intra-cell interference

System Model

Channel Model

- Coherence time *L* symbols:
 - L_{τ} symbols: Training duration
 - $L-L_{\tau}$ symbols: Data transmission
- Distance dependent path loss, $\alpha \gg 2$
- i.i.d. Rayleigh fading across users

Fractional Power Control

- Power control both during training and data transmission
- Distance dependent fractional power control, $(R_u^\epsilon)^\alpha$, $\epsilon \in [0,1]$
- $\epsilon=0$: No power control and $\epsilon=1$: Perfect path loss compensation
- Baseline power is assumed to be p^{-1}

Assumptions

- **1** MU locations connected to any BS in a given time frequency block form a PPP: ϕ_m
 - The density of PPP ϕ_m is $\lambda = p_c \lambda_B$
 - Consequence of independent thinning (approximation for tractability)
- **2** R_v for $v \in \phi_m(\lambda)$ the distance of interfering MUs form their tagged BSs are assumed to be independent
 - Dependence between R_v for $v \in \phi_m(\lambda)$ is very weak
- No synchronization between training and data transmission phases among users is assumed
 - Generalized model
 - Captures the effect of pilot contamination

- Derive an analytical expression for channel estimation error variance
- ② Derive the uplink coverage probability expression for a typical BS-MU link
 - \bullet Study the coverage behaviour with Power control factor , ϵ and SINR threshold, θ
- Area spectral efficiency (ASE)
- \bullet Find ϵ_{opt}
- \bullet Find $L_{\tau,opt}$

Problem Statement

• Coverage Probability: The probability that typical BS achieves a SINR threshold, θ

$$P_c(\epsilon, \theta, L_{\tau}) = \mathbb{P}(\mathsf{SINR} > \theta)$$

 ASE: ASE is defined to be the total data transmitted in the uplink per unit area per channel use

$$\mathsf{ASE}(\epsilon, L_\tau, R(\theta)) = \left(1 - \frac{L_\tau}{L}\right) R(\theta) \lambda P_c(\epsilon, \theta, L_\tau)$$

• Optimal Power Control Factor, ϵ_{opt}

$$\epsilon_{opt} = \operatorname*{arg\,max}_{\epsilon \in [0,1]} P_c(\epsilon, \theta, L_{\tau})$$

• Optimal Training Duration, $L_{\tau,opt}$

$$L_{\tau,opt} = \operatorname*{arg\,max}_{L_{\tau} \in [0,L]} \left(1 - \frac{L_{\tau}}{L}\right) R(\theta) \lambda P_{c}(\epsilon_{opt},\theta,L_{\tau})$$

Two Phases

- Consider typical BS and MU pair and the BS located at origin
- Uplink Training
 - Typical MU sends L_{τ} length training sequence
 - The BS obtains an estimate \hat{h}_u of the channel h_u
- Uplink Data Transmission
 - MU transmit data for rest $L L_{\tau}$ symbol durations
 - BS makes use of \hat{h}_u to estimate the transmitted symbol

Channel Estimation Error

• Channel estimation error variance, $\sigma_{e|r_u}$ conditioned on the first contact distance, $R_u = r_u$

$$\sigma_{\mathsf{e}|r_{u}}^{2} = \frac{1}{1 + \frac{p^{-1}r_{u}^{\alpha(\epsilon-1)}L_{\tau}}{p^{-1}\mathcal{I}_{\tau}^{\tau} + \mathbb{E}[R_{u}^{\alpha\epsilon}]\sigma_{n_{\tau}}^{2}}}$$

where $\mathcal{I}_{v}^{\tau} = \mathbb{E}\left[\sum_{v \in \phi_{m}(\lambda)} (R_{v}^{\epsilon})^{\alpha} D_{v}^{-\alpha} |h_{v} q_{v}|^{2}\right]$ is the interference term and $\sigma_{n_{\tau}}^{2}$ is the noise variance.

• Using Campbell's theorem, computing \mathcal{I}_{v}^{τ}

$$\mathcal{I}_{v}^{\tau} = \int_{0}^{\infty} 2\pi \lambda (r_{v}^{\epsilon})^{\alpha} \frac{r_{u}^{-\alpha+2}}{\alpha - 2} f_{R_{v}}(r_{v}) dr_{v}$$

Coverage Probability

The uplink coverage probability for a typical MU is given by

$$\begin{split} &P_{c}(\epsilon,\theta,L_{\tau}) = \int_{0}^{\infty} \exp\left(-\frac{\theta \sigma_{e|r_{u}}^{2}}{1-\sigma_{e|r_{u}}^{2}}\right) \\ &\exp\left(-\frac{p\theta r_{u}^{\alpha(1-\epsilon)}\mathbb{E}[R_{u}^{\alpha\epsilon}]\sigma_{n_{d}}^{2}}{1-\sigma_{e|r_{u}}^{2}}\right) \mathcal{L}_{I_{v}^{d}}\left(\frac{\theta r_{u}^{\alpha(1-\epsilon)}}{1-\sigma_{e|r_{u}}^{2}}\right) f_{R_{u}}(r_{u}) \mathrm{d}r_{u} \end{split}$$

- $f_{R_u}(r_u)$ is the nearest neighbour distance distribution
- $\mathcal{L}_{l_v^d}(s)$ is the **Laplace transform** of the interference calculated at $s=\frac{\theta r_u^{\alpha(1-\epsilon)}}{1-\sigma^2}$

$$\begin{split} \mathcal{L}_{l_{v}^{d}}(s) = & \exp\bigg(-2\pi\lambda\int_{r_{u}}^{\infty}\bigg(1-\int_{0}^{\infty}\frac{\pi\lambda_{B}}{1+st_{v}^{(\epsilon\alpha/2)}d_{v}^{-\alpha}}\\ & \exp(-\lambda_{B}\pi t_{v})\mathrm{d}t_{v}\bigg)d_{v}\;\mathrm{d}d_{v}\bigg) \end{split}$$

Table: System Parameters

BS density	0.24 BS/km ²
MU density	$0.80~\mathrm{MU/km^2}$
Baseline transmit power	10 mW
Fractional power control factor	0.25, 0.75
Noise power (Training/ Data transmission)	−174 dBm
Path loss coefficient	2.5, 3.7
Training duration	10, 50 symbols
Coherence Duration	50, 200 symbols

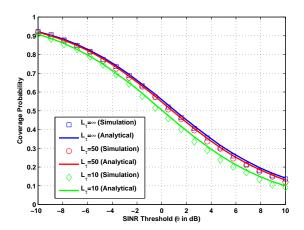


Figure : Coverage probability, P_c vs SINR threshold, θ for $\epsilon=0.25$, $\lambda_B=0.24$, $\lambda_M=0.80$, $p^{-1}=10$ mW, $\sigma_{n_d^2}=\sigma_{n_\tau^2}=-174$ dBm, $\alpha=3.7$ and L_τ measured in symbols.

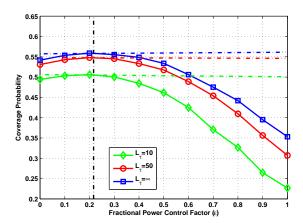


Figure : Coverage probability, P_c vs Fractional power control factor, ϵ , for perfect channel knowledge ($L_{\tau}=\infty$) and $L_{\tau}=10,50,~\lambda_B=0.24,~\lambda_M=0.80,~\theta=0$ dB, $p^{-1}=10$ mW, $\sigma_{n_d^2}=\sigma_{n_{\tau}^2}=-174$ dBm, $\alpha=3.7$ and L_{τ} measured in symbols.

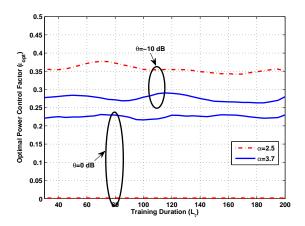


Figure : Optimal epsilon, ϵ_{opt} vs Training duration, L_{τ} for $\theta=0$ dB, -10 dB, $\lambda_B=0.24$, $\lambda_M=0.80$, $p^{-1}=10$ mW, $\sigma_{n_x^2}=\sigma_{n_z^2}=-174$ dBm, $\alpha=2.5,3.7$ and L_{τ} measured in symbols.

System Design Implications

$$\epsilon_{opt}, L_{\tau,opt} = \mathop{\mathrm{arg\,max}}_{\epsilon \in [0,1], L_{\tau} \in [0,L]} \mathsf{ASE}$$

• Optimal Fractional Power Control Parameter, ϵ_{opt}

$$\epsilon_{opt} = \operatorname*{arg\,max}_{\epsilon \in [0,1]} P_c(\epsilon, \theta, L_{\tau}).$$

• Optimal Training Duration, $L_{\tau,opt}$ symbols

$$L_{ au,opt} = rg \max_{L_{ au} \in [0,L]} \left(1 - rac{L_{ au}}{L}
ight) R(heta) \lambda P_c(\epsilon_{opt}, heta, L_{ au}).$$

- ullet Use numerical computations to find ϵ_{opt} first
- Use ϵ_{opt} to numerically compute $L_{\tau,opt}$

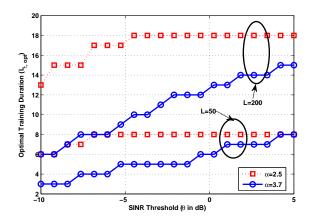


Figure : Optimal training duration $L_{\tau,opt}$ vs SINR threshold θ , for $\lambda_B=0.24$, $\lambda_M=0.80$, $p^{-1}=10$ mW, $\sigma_{n_d^2}=\sigma_{n_\tau^2}=-174$ dBm, $\alpha=2.5,3.7$.

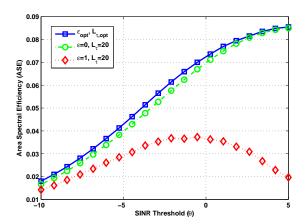


Figure : Area spectral efficiency, ASE vs SINR Threshold, θ for $\lambda_B=0.24$, $\lambda_M=0.80$, $p^{-1}=10$ mW, $\sigma_{n_d^2}=\sigma_{n_\tau^2}=-174$ dBm, $\alpha=3.7$ and L=200

Thank You