Algorithms to find the Optimum Operating Points for D2D Communication

Vinnu Bhardwaj

SPC Lab

May 9, 2015

V.	Bhardwaj	
Alg	gorithms	

SPC Lab

<ロ> <同> <同> <同> <同> <同

Outline

Recap

Fading

Downlink in-band D2D Uplink in-band D2D With CSI Without CSI

Simulation Results

Modified Dijkstra's Algorithm

э

イロト イヨト イヨト イヨト

System Model

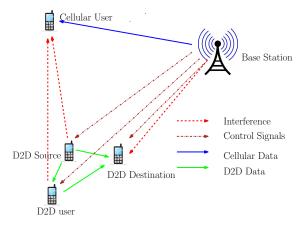


Figure: Downlink In-band D2D

Recap

- ► Objective:
 - Optimal D2D routing to maximize end-to-end throughput
 - Fixed Rate Scheme: Find optimal rate
 - Fixed Power Scheme: Find optimal transmit powers
 - Satisfy interference constraint at the cellular users
- Parameters:
 - γ Target D2D SINR
 - γ_b min. cellular SNR
 - ▶ γ_d max. interference constraint to the cellular user

Algorithms

- Downlink in-band D2D
- Uplink in-band D2D

<ロ> <同> <同> <三> <

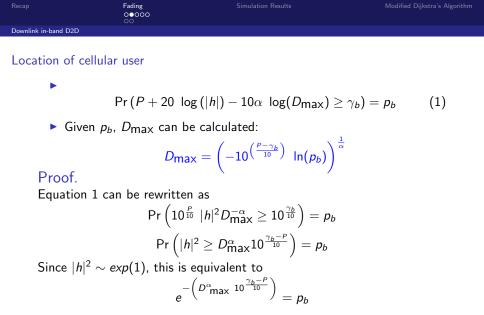
Fading

00000

Fading Downlink in-band D2D

- Objective: Probabilistic guarantees for protection of the cellular users, while maximizing the throughput for the D2D users.
- ► Approach:
 - A cellular user assumed at a location where the SNR is greater than γ_b with probability p_b
 - At this user, interference caused by D2D communication should be less than γ_d with probability greater than p_d
 - This fixes the maximum power D2D transmitters can use
- Note that in the path loss model, p_b and p_d were both 1

(日) (同) (三) (三)



The result follows.

V. Bhardwaj Algorithms <ロト < 回 > < 回 > < 回 > < 回 >

	Fading OO●OO OO	
Downlink in-band D2D		

Interference at the cellular user I

$$\Pr\left(P_{d_{\tau},BS_{i}}-10\alpha \ \log\left(D_{d_{\tau},BS_{i}}-D_{\max}\right)+20 \ \log\left(|h|\right) \leq \gamma_{d}\right) \geq p_{d} \quad (2)$$

► Given D_{max},

$$\begin{aligned} P_{d_{T},BS_{i}}^{\mathsf{max}} &= 10 \log \left(\frac{10^{\frac{\gamma_{d}}{10}} \ (D_{d_{T},BS_{i}} - D_{\mathsf{max}})^{\alpha}}{-\ln(1 - p_{d})} \right) \\ P_{d_{T}}^{\mathsf{max}} &= \min_{1 \leq i \leq N} P_{d_{T},BS_{i}}^{\mathsf{max}}. \end{aligned}$$

Image: Image:

.

V.	Bhardwaj	
Alg	gorithms	

イロト イヨト イヨト イヨト

SPC Lab

Downlink in-band D2D

Proof.

Equation 2 can be rewritten as:

Fading 000●0

$$\Pr\left(10^{\frac{P_{d_{T},BS_{i}}}{10}} (D_{d_{T},BS_{i}} - D_{\max})^{-\alpha} |h|^{2} \le 10^{\frac{\gamma_{d}}{10}}\right) \ge p_{d}$$
$$\Pr\left(|h|^{2} \ge 10^{\frac{(\gamma_{d} - P_{d_{T},BS_{i}})}{10}} (D_{d_{T},BS_{i}} - D_{\max})^{\alpha}\right) \le 1 - p_{d}$$

Since $|h|^2 \sim exp(1)$, this is equivalent to

$$e^{-\left(10\frac{\left(\gamma_d-P_{d_T,BS_i}^{\mathsf{max}}\right)}{10}\left(D_{d_T,BS_i}-D_{\max}\right)^{\alpha}\right)}=1-p_d$$

The result follows.

V.	Bhardwaj	
Alg	gorithms	

	Fading 0000● 00	
Downlink in-band D2D		

► Transmit power required:

$$P_{d_T}^{d_R} = P_{\text{int}}^{d_R} + \gamma + 10 \alpha \log(d_{d_T}^{d_R}) - 20\log(|h|)$$

► Feasibility

Link $d_t \longrightarrow d_R$ declared infeasible if $P_{d_T}^{d_R} > P_{d_T}^{\max}$.

We have the feasible D2D links.

- Previous algorithms with the following modifications will find the optimum operating points:
 - Definition of P^{max}_{d_x}
 - D2D SINR should also take into account the channel gains.

(日) (同) (三) (三)

Uplink In-band D2D

- Interference at D2D receiver and the BS
- ▶ With CSI: Algorithm similar to the one presented earlier
- ► Without CSI:
 - Cellular link in outage if SINR below a threshold
 - Since cellular users employ power control, link in outage if interference grater than a threshold
 - ▶ Interference at the BS less than γ_d with probability greater than p_u $\Pr(P_{d_T,BS} - 10\alpha \log(D_{d_T,BS}) + 20 \log(|h|) \le \gamma_d) \ge p_u$ (3)
 - $P_{d_T,BS}^{\max}$ can be then calculated as :

$$P_{d_T}^{\mathsf{max}} = 10 \log \left(\frac{10^{\frac{\gamma_d}{10}} (D_{d_T,BS})^{\alpha}}{-\ln(1-p_u)} \right)$$

《曰》 《圖》 《臣》 《臣》

	Fading ○○○○○ ○●	
Uplink in-band D2D		

Proof.

Equation 3 can be rewritten as:

$$\Pr\left(10^{\frac{P_{d_T}}{10}} (D_{d_T,BS})^{-\alpha} |h|^2 \le 10^{\frac{\gamma_d}{10}}\right) \ge p_u$$
$$\Pr\left(|h|^2 \ge 10^{\frac{(\gamma_d - P_{d_T})}{10}} (D_{d_T,BS_i})^{\alpha}\right) \le 1 - p_u$$

Since $|h|^2 \sim exp(1)$, this is equivalent to

$$e^{-\left(10\frac{\left(\gamma_d-P_{d_T}^{\max}\right)}{10}(D_{d_T,BS_i})^{\alpha}\right)}=1-p_u$$

SPC Lab

The result follows.

V.	Bhardwaj
Alg	gorithms

Setup

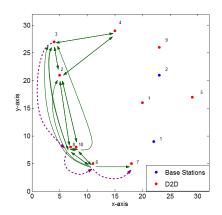


Figure: Locations of the BSs and D2D users.

Image: A matrix and a matrix

V.	Bhardwaj
Alg	orithms

Downlink In-band D2D

Fixed Rate Scheme

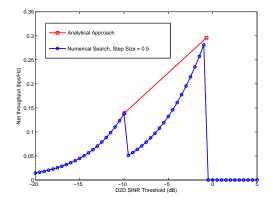


Figure: Fixed rate scheme: Illustration of the numerical search approach and the analytical approach in the Rayleigh fading model.

Downlink In-band D2D

Fixed Power Scheme

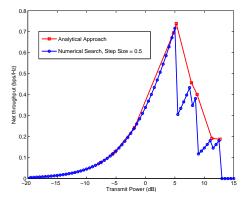


Figure: Fixed power scheme: Illustration of the numerical search approach and the analytical approach in the Rayleigh fading model.

Uplink In-band D2D

Fixed Rate Scheme

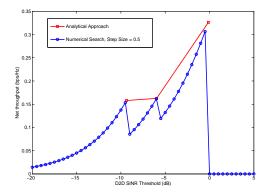


Figure: Fixed rate scheme: Illustration of the numerical search approach and the analytical approach in the *uplink inband* D2D model with Rayleigh fading.

Modified Dijkstra's Algorithm for the Fixed Rate Scheme: An Alternative

V. Bhardwaj Algorithms SPC Lab

イロト イヨト イヨト イヨト

Previous Algorithm I

- Step 1 Find the power $(P_{d_s}^{\max})$ at which the source d_s is allowed to transmit. Find the corresponding SINR $(\gamma_{d_s}^{d_D})$ at d_D . Call this SINR γ_1 .
- Step 2 Consider the path $d_S \longrightarrow d_i \longrightarrow d_D$. The maximum SINR at which some two-hop path will exist:

$$\gamma_2 = \max_{i \neq D, S} \left(\min(\gamma_{d_s}^{d_i}, \gamma_{d_i}^{d_D}) \right)$$

A peak exists here only if γ_2 is greater than γ_1 .

Step 3 Repeat Step 2 for all possible three hop paths, and determine

$$\gamma_{3} = \max_{i \neq D, S, j \neq D, S, i} \left(\min(\gamma_{ds}^{d_{i}}, \gamma_{d_{i}}^{d_{j}}, \gamma_{d_{j}}^{d_{D}}) \right)$$

A peak exists here if γ_3 is greater than the previous γ (i.e., γ_2 , or γ_1 if γ_2 does not exist).

V. Bhardwaj Algorithms

Previous Algorithm II

Step 4 Repeat with increasing number of hops, a point γ_f is found such that when $\gamma > \gamma_f$, d_S and d_D are no longer connected in the graph $G_{\gamma}(V, E)$.

Note: The existence of γ_f is guaranteed by the fact that the $G_{\gamma_j}(V, E)$ always has fewer links than $G_{\gamma_k}(V, E)$ for all j and k s.t. j > k.

Step 5 Set $\gamma_{opt} = \arg \max_{1 \le i \le M, \gamma_i} \operatorname{exists} R_{eff}(\gamma_i)$

イロト イヨト イヨト イヨト

Modified Dijkstra's Algorithm

Modifications:

- Link weights: Rates corresponding to the max. transmit power
- Metric at each step:{min(Rates), Number of hops}
- If more than one paths merge at a node, select the one that maximizes <u>min(Rates)</u> <u>Number of hops</u>

 Output: The optimum SINR threshold that achieves the maximum end-to-end throughput

SPC Lab

イロト イポト イヨト イヨト

THANKS!!!

V. Bhardwaj Algorithms ・ロ・・師・・冊・・冊・・日・ シック