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System Model

= +

Φ ∈ Rm×N

x ∈ RN

n ∈ Rm
∼ N(0, Q)y ∈ Rm

y = Φx + n

m ≪ N

x is k− sparse

Rank(Q) = p

Figure: System Model

Goal: Recover x from measurements y when, Q and Φ are known



Solution - CoNoSBL
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Figure: Equivalent System Model

• Modified EM-SBL to
CoNo-SBL that recovers x
from a mixture of noisy and
noiseless measurements

• CRLB on MSE of x, when
x is a compressible signal

• Assumes that Q is known

• Analysed time complexity

• Solution when Q is
unknown?



Non-uniform noise

• EM-SBL suffers from identifiability problem even when
Q = σ2I is unknown

• Consider estimation of noise statistics when we have
non-uniform noise i.e., Q = D using MMV setup

= +

y1 y2 y3 Φ

x1 x2 x3

n1 n2 n3

k−sparse

ni ∼ N(0, D)

Figure: System Model



Summary - SBL

Pr(X|Y ; Γ, Q) ∼ N(µ,Σ)

Initialize Γ← I

E - Step :

M - Step :

Σ = (ΦQ−1ΦT + Γ−1)−1

µ = ΣΦT (Q + ΦΓΦT )−1Y

γ
(t+1)
i = |µi|

2 + Σ(i,i)

Γ = diag(γi), i = 1, . . . , N

x̂ = µ

Figure: Summary of SBL



Algorithm

1 D̄ = Im

2 compute Γ̂ = MSBL(Y,A, D̂)

3 Find S =
{indices corresponding to k maximum magnitude entries}

4 P = AS(A
H
S AS)

−1AH
S

5 D̂ = 1
L

∑L
i=1(I − P)Y

6 Repeat 2 to 5 till convergence

Convergence criteria:
||Γt+1 − Γt ||F ≤ 10−4&||D̂t+1 − D̂t ||F ≤ 10−2



Simulation Results

5 10 15 20
10

−2

10
−1

10
0

10
1

L

M
S

E

 

 

MSBL
MBP
MOMP
SSP
LMMSESBL
MUDSASBL

SNR = 10dB
N = 50
m = 30
k = 5

Figure: MSE vs. L
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Figure: Support recovery vs. L
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Figure: MSE vs. SNR
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Analysis

• Let S = {Support of x}

• yS = ΦSxS + nS

• ySc = nSc

• D̂ = 1
L

∑
diag( 1

m

∑
yH
Sc (:, i)ycS(:, i))

• Estimation of D̂ involves estimating m parameters

• From simulations, it is seen that L = O(k) measurements are
required for successful recovery



Rank-Deficient noise

• Involves estimation of m2 + 1 parameters(m2 elements and p)

• MUDSASBL gives poor estimate of covariance matrix

• Follow PCA approach:

• Σy = ΦΓΦT +Q

• Q̃ = Σy −ΦΓΦT

• Use Q̃ as an estimate of Q

• To use CoNo-SBL, need to identify the dimensionality of
underlying noise subspace ({p})



PCA

• Dimensionality reduction - converts a set of observations of
possibly correlated variables into a set of values of
uncorrelated variables called as principal components

• {xi}
n
i=1 ∈ Rm be the data matrix

• Goal: To find α1, ..αp such that
Var(αT

1 xi ) ≥ Var(αT
2 xi ) ≥ · · ·Var(α

T
p xi ) and

Cov(αT
k xi , α

T
l xi ) = 0∀k 6= l

• Mathematically, if dj = Var(αT
j xi ) and S is the sample

covariance matrix of the data, then PCA: Rm → Rp and
α1, · · ·αp are eigen vectors of S and d1, · · · , dj are
corresponding eigen values

What value of p to choose from the eigen values!!



• Percent Variance: Find q between 1 and m such that

d1 + d2 + · · ·+ dq

d1 + d2 + · · ·+ dm
≥ γ

, where γ is a pre-determined proportion, say 80% or 90%

• Scree test: Plot the eigenvalues d1, d2, ..., dp in descending
order (scree plot) and look for a “big gap” or an “elbow” in
such a graph.

• Sequential tests:
For j = 1, 2, · · · ,m − 1, consider a series of null hypotheses:

H0,j : dm = dm1 = · · · = dmj

Start by testing H0,1,H0,2, · · · until a null hypothesis is first
rejected. Suppose H0,q is the first rejected null hypothesis,
then the first m q components are retained.



Drawbacks:

• Threshold γ

• No objective function to determine gap or elbow

• Sequential detection assumes that data is generated from
multivariate gaussian distribution

• Computationally expensive



Objective: To propose a simple method to find gap in a objective
and automated way

• Main idea: assume a distribution on dj ’s and find p by
maximising profile likelihood

• Profile Likelihood: Suppose l(θ, ψ; y) be the likelihood
function, θ - main parameter and ψ- nuisance parameter, then
profile likelihood for θ is defined as

lθ(θ; y) = l(θ, ψ̂θ; y)

ψ̂θ is MLE of ψ for fixed θ

• Advantages of profile likelihood:
• Always available
• Maximum of profile likelihood is always same as MLE of θ



• d1 ≥ d2 ≥ · · · dm be the eigen values

• for a fixed number 1 ≤ p ≤ m, S1 = {d1, · · · dp} and
S2 = {dp+1, · · · dm}

• If an elbow or gap exists at p, then S1 ∈ f (d ; θ1) and
S2 ∈ f (d ; θ2). Assume S1 and S2 are independent

• p is the main parameter of interest

l(p, θ1, θ2) =

p∑

i=1

log f (d ; θ1) +
m∑

j=p+1

log f (d ; θ2)

θ1 and θ2 are unknown and should be computed from data



Let θ̂1 and θ̂2 be MLEs of θ1, θ2 respectively

lp(p) =

p∑

i=1

log f (d ; ˆθ1(p)) +
m∑

j=p+1

log f (d ; ˆθ2(p))

p̂ = argmaxp lp(k)∀k = 1, · · · ,m

• Choose f to be Gaussian distribution

• The parameters will now be θ1 = {µ1, σ
2} and θ2 = {µ2, σ

2}



• MLEs for µ1, µ2 and σ2 are computed using sample averages,

µ̂1 =

∑
i∈S1di

p

µ̂2 =

∑
j∈S2dj

m − p

and

σ̂2 =
(p − 1)s21 + (m − p − 1)s22

m − 2

where s2j is sample variance of Sj



Numerical results
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Figure: Rank estimation using
screeplot vs. percent variance
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Figure: Phase transition diagram
for estimation of rank using
scree plot



UCoNo-SBL

= +

y1 y2 y3 Φ

x1 x2 x3

n1 n2 n3

k−sparse

ni ∼ N(0, Q)

rank(Q) = p ≤ m

Figure: System model - Unknown noise covariance matrix



Proposed method

Algorithm:

1 Let xi ∼ N (0, Γi )

2 Γi ← SBL(yi ,Φ, I)

3 Compute Q̂ = 1
L

∑L
i=1(yiy

T
i − ΦΓiΦ

T )

4 find p̂ using eigen values of Q, let Vp be the corresponding
eigen vectors

5 Y1 = VH
p Y , Y2 = VH

m−pY , Φ1 = VH
p Φ, Φ2 = VH

m−pΦ and

D̂ = Λ(1 : p)

(Xi , Γi ) = CoNoSBL(Y1(i),Y2(i),Φ1,Φ2, D̂)∀i

6 Repeat 3 to 5 until convergence



Analysis

• Convergence criteria considered is convergence of Q in terms
of frobenius norm on error of covariance matrix

• Since, we are using sample covariance matrix as an estimate
of Covariance matrix, requires L ≥ m



• Consider some training samples to estimate the noise subspace

• Compute p̂ from Q̂

• Use CoNoSBL with this estimate of Q

• Identical to using an estimated Q instead of true Q

• Relatively faster compared to previous approach, however
naive in implementation



• Use some other metrics for convergence like chordal distance,
spectral distance etc

• Propose a method to recover Q using lesser number of
measurements

• Theoretical guarantees on convergence of Γ and Q

• Analysis on Phase transition of CoNo-SBL



Thank You
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