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What is the “big data” phenomenon?

◦ Every day: 2.5 billion gigabytes of data created
◦ Last two years: creation of 90% of the world’s data (source: IBM)



How can algorithms be scaled?
Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012.
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Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn

◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n
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A general approximation-theoretic bound
The randomized solution x̂ ∈ C provides δ-accurate cost approximation if

f(AxLS) ≤ f(Ax̂) ≤ (1 + δ) f(AxLS).

Theorem (Pilanci & W, 2015)

For a broad class of random projection matrices, a sketch dimension

m %
effrank(A; C)

δ

yields δ-accurate cost approximation with exp. high probability.

◦ past work on unconstrained case C = Rd: effective rank equivalent to
rank(A) (Sarlos, 2006; Mahoney et al. 2011)

◦ effective rank can be much smaller than standard rank
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Favorable dependence on optimum xLS

x
LS
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Tangent cone K at xLS

Set of feasible directions at the optimum xLS

K =
{

∆ ∈ Rd | ∆ = t (x− xLS) for some x ∈ C.
}
.



Unfavorable dependence on optimum xLS
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But what about solution approximation?

x∗ = arg min
x∈C
‖Ax− y‖22 and x̂ ∈ arg min

x∈C
‖S(Ax− y)‖22
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Failure of standard random projection

◦ Noisy observation model: y = Ax∗ + w where w ∼ N(0, σ2In).

10
2 3

10
4

0.001

0.01

0.1

1

10

M
SE

Mean−squared  error vs. number of samples

LS

Sketch

number of samples

◦ Least-squares accuracy: E‖xLS − x∗‖2A = σ2 rank(A)
n
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Overcoming this barrier?

Sequential scheme....
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solution.
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Application to Netflix data
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Netflix data set

◦ 2 million × 17000 matrix A of ratings (users × movies)

◦ Predict the ratings of a particular movie

◦ Least-squares regression with `2 regularization

min
x
‖Ax− y‖22 + λ‖x‖22

◦ Partition into test and training sets, solve for all values of
λ ∈ {1, 2, ..., 100}.



Fitting the full regularization path

Regularization parameter : 100 values
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Gradient Descent vs Newton’s Method
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Gradient Descent vs Newton’s Method
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Exact and approximate forms of Newton’s method

Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
(x− xt)T∇2g(xt)(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt) is Hessian at xt.

Approximate Newton steps:

◦ various types of quasi-Newton updates: Nocedal & Wright book: Chap. 6

◦ BFGS method; SR1 method etc.

◦ stochastic gradient + stochastic quasi-Newton (e.g., Byrd, Hansen, Nocedal &

Singer 2014)
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Iterative sketching for general convex functions

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.
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Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, 2015)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)
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Logistic regression: uncorrelated features
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Logistic regression: correlated features
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Consequences for linear programming

◦ LP in standard form:

min
Ax≤b

cTx where A ∈ Rn×d, b ∈ Rn and c ∈ Rd.

◦ interior point methods for LP solving: based on unconstrained sequence

xµ := arg min
x∈Rd

{
µcTx−

n∑

i=1

log(bi − aTi x)
}
.

◦ as parameter µ→ +∞, the path xµ approaches an optimal solution x∗

from the interior

Martin Wainwright (UC Berkeley) February 2017 18 / 24
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Standard central path

Exact Newton

∑n

i=1

log(bi − ai
T x)
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Newton sketch follows central path
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Linear Programs

Consequence: An LP with n constraints and d variables can be solved in
≈ O(nd) time when n� d.

Martin Wainwright (UC Berkeley) February 2017 20 / 24



Performance compared to CPLEX

Random ensembles of linear programs
Sample size n = 10, 000

Dimensions d = 1, 2, ..., 500
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CODE: eecs.berkeley.edu/~mert/LP.zip
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Summary

◦ high-dimensional data: challenges and opportunities

◦ optimization at large scales:
• Need fast methods...
• But approximate answers are OK
• randomized algorithms (with strong control) are useful

◦ this talk:

◦ the power of random projection
◦ information-theoretic analysis reveals deficiency of classical sketch
◦ Newton sketch: a fast and randomized Newton-type method

Papers/pre-prints:

◦ Pilanci & W. (2015): Randomized sketches of convex programs with
sharp guarantees, IEEE Transactions on Information Theory

◦ Pilanci & W. (2016a): Iterative Hessian Sketch: Fast and accurate
solution approximation for constrained least-squares, Journal of Machine
Learning Research

◦ Pilanci & W. (2016b): Newton Sketch: A linear-time optimization
algorithm with linear-quadratic convergence. To appear in SIAM Journal
of Optimization.
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Gaussian width of transformed tangent cone

Gaussian width of set
AK ∩ Sn−1 = {A∆ | ∆ ∈ K, ‖A∆‖2 = 1}

W(AK) := E
[

sup
z∈AK∩Sn−1

〈g, z〉
]

where g ∼ N(0, In×n).

Gaussian widths used in many areas:

◦ Banach space theory: Pisier, 1986, Gordon 1988

◦ Empirical process theory: Ledoux & Talagrand, 1991, Bartlett et al., 2002

◦ Geometric analysis, compressed sensing: Mendelson, Pajor &
Tomczak-Jaegermann, 2007
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Fast Johnson-Lindenstrauss sketch
Step 1: Choose some fixed orthonormal matrix H ∈ Rn×n.
Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=

D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ Rm×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)
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