
Statistics meets Optimization:
Fast randomized algorithms for large data sets

Martin Wainwright

UC Berkeley
Statistics and EECS

Joint work with: Mert Pilanci
UC Berkeley & Stanford University

Martin Wainwright (UC Berkeley) February 2017 1 / 24

What is the “big data” phenomenon?

◦ Every day: 2.5 billion gigabytes of data created
◦ Last two years: creation of 90% of the world’s data (source: IBM)

How can algorithms be scaled?
Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012.

How can algorithms be scaled?
Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012.

How can algorithms be scaled?

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry

◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011
Cormode et al., 2012.

Randomized sketching for optimization

DATA OPTIMIZER

Randomized sketching for optimization

DATA OPTIMIZER

Randomized sketching for optimization

DATA OPTIMIZER

parameter

cost

all data

Randomized sketching for optimization

DATA OPTIMIZER

parameter

cost

all data

sample

Randomized sketching for optimization

DATA OPTIMIZER

parameter

cost

all data

Randomized sketching for optimization

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

Randomized sketching for optimization

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

combined

Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn

◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n

Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn
◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n

An

d

Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn
◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n

An

d

Sm
SA=

m

d

A general approximation-theoretic bound
The randomized solution x̂ ∈ C provides δ-accurate cost approximation if

f(AxLS) ≤ f(Ax̂) ≤ (1 + δ) f(AxLS).

Theorem (Pilanci & W, 2015)

For a broad class of random projection matrices, a sketch dimension

m %
effrank(A; C)

δ

yields δ-accurate cost approximation with exp. high probability.

◦ past work on unconstrained case C = Rd: effective rank equivalent to
rank(A) (Sarlos, 2006; Mahoney et al. 2011)

◦ effective rank can be much smaller than standard rank

A general approximation-theoretic bound
The randomized solution x̂ ∈ C provides δ-accurate cost approximation if

f(AxLS) ≤ f(Ax̂) ≤ (1 + δ) f(AxLS).

Theorem (Pilanci & W, 2015)

For a broad class of random projection matrices, a sketch dimension

m %
effrank(A; C)

δ

yields δ-accurate cost approximation with exp. high probability.

◦ past work on unconstrained case C = Rd: effective rank equivalent to
rank(A) (Sarlos, 2006; Mahoney et al. 2011)

◦ effective rank can be much smaller than standard rank

A general approximation-theoretic bound
The randomized solution x̂ ∈ C provides δ-accurate cost approximation if

f(AxLS) ≤ f(Ax̂) ≤ (1 + δ) f(AxLS).

Theorem (Pilanci & W, 2015)

For a broad class of random projection matrices, a sketch dimension

m %
effrank(A; C)

δ

yields δ-accurate cost approximation with exp. high probability.

◦ past work on unconstrained case C = Rd: effective rank equivalent to
rank(A) (Sarlos, 2006; Mahoney et al. 2011)

◦ effective rank can be much smaller than standard rank

Favorable dependence on optimum xLS

x
LS

∆
K

C

Tangent cone K at xLS

Set of feasible directions at the optimum xLS

K =
{

∆ ∈ Rd | ∆ = t (x− xLS) for some x ∈ C.
}
.

Unfavorable dependence on optimum xLS

x
LS

∆ K
C

Tangent cone K at xLS

Set of feasible directions at the optimum xLS

K =
{

∆ ∈ Rd | ∆ = t (x− xLS) for some x ∈ C.
}
.

But what about solution approximation?

x∗ = arg min
x∈C
‖Ax− y‖22 and x̂ ∈ arg min

x∈C
‖S(Ax− y)‖22

𝜖

original cost

approximate cost

ො𝑥

𝒙∗

But what about solution approximation?

x∗ = arg min
x∈C
‖Ax− y‖22 and x̂ ∈ arg min

x∈C
‖S(Ax− y)‖22

𝜖

original cost

approximate cost
?

ො𝑥

𝒙∗

Failure of standard random projection

◦ Noisy observation model: y = Ax∗ + w where w ∼ N(0, σ2In).

10
2 3

10
4

0.001

0.01

0.1

1

10

M
SE

Mean−squared error vs. number of samples

LS

Sketch

number of samples

◦ Least-squares accuracy: E‖xLS − x∗‖2A = σ2 rank(A)
n

Failure of standard random projection

◦ Noisy observation model: y = Ax∗ + w where w ∼ N(0, σ2In).

10
2 3

10
4

0.001

0.01

0.1

1

10

M
SE

Mean−squared error vs. number of samples

LS

Sketch

number of samples

◦ Least-squares accuracy: E‖xLS − x∗‖2A = σ2 rank(A)
n

Overcoming this barrier?

Sequential scheme....

10
2

10
3

10
4

0.001

0.01

0.1

1

LS

Iterative Sketch
Naive Sketch

number of samples

M
SE

Mean−squared error vs. number of samples

Iterative projection scheme yields accurate tracking of original least-squares
solution.

Overcoming this barrier? Sequential scheme....

10
2

10
3

10
4

0.001

0.01

0.1

1

LS

Iterative Sketch
Naive Sketch

number of samples

M
SE

Mean−squared error vs. number of samples

Iterative projection scheme yields accurate tracking of original least-squares
solution.

Application to Netflix data

Martin Wainwright (UC Berkeley) February 2017 11 / 24

Netflix data set

◦ 2 million × 17000 matrix A of ratings (users × movies)

◦ Predict the ratings of a particular movie

◦ Least-squares regression with `2 regularization

min
x
‖Ax− y‖22 + λ‖x‖22

◦ Partition into test and training sets, solve for all values of
λ ∈ {1, 2, ..., 100}.

Fitting the full regularization path

Regularization parameter : 100 values
0.5 1 1.5 2 2.5 3

Te
st

 E
rr

or

8.1

8.15

8.2

8.25
Test Error

Matlab Cholesky solver
Conjugate Gradient
Iterative Sketch

Regularization parameter : 100 values
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e

0

500

1000

1500

2000
Computation time with respect to regularization parameter index X: 99

Y: 1677

X: 100
Y: 101.5

1692

874.2

0 1000 2000

total computation time (seconds)

Fitting the full regularization path

Regularization parameter : 100 values
0.5 1 1.5 2 2.5 3

Te
st

 E
rr

or

8.1

8.15

8.2

8.25
Test Error

Matlab Cholesky solver
Conjugate Gradient
Iterative Sketch

Regularization parameter : 100 values
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e

0

500

1000

1500

2000
Computation time with respect to regularization parameter index X: 99

Y: 1677

X: 100
Y: 101.5

1692

874.2

101.5

0 1000 2000

total computation time (seconds)

CODE: eecs.berkeley.edu/~mert/LS.m

eecs.berkeley.edu/~mert/LS.m

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

O(nd)

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

O(nd)
2

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

affine
invariant

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

O(nd)

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Exact and approximate forms of Newton’s method

Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
(x− xt)T∇2g(xt)(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt) is Hessian at xt.

Approximate Newton steps:

◦ various types of quasi-Newton updates: Nocedal & Wright book: Chap. 6

◦ BFGS method; SR1 method etc.

◦ stochastic gradient + stochastic quasi-Newton (e.g., Byrd, Hansen, Nocedal &

Singer 2014)

Exact and approximate forms of Newton’s method

Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
(x− xt)T∇2g(xt)(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt) is Hessian at xt.

Approximate Newton steps:

◦ various types of quasi-Newton updates: Nocedal & Wright book: Chap. 6

◦ BFGS method; SR1 method etc.

◦ stochastic gradient + stochastic quasi-Newton (e.g., Byrd, Hansen, Nocedal &

Singer 2014)

Exact and approximate forms of Newton’s method

Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
(x− xt)T∇2g(xt)(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt) is Hessian at xt.

Approximate Newton steps:

◦ various types of quasi-Newton updates: Nocedal & Wright book: Chap. 6

◦ BFGS method; SR1 method etc.

◦ stochastic gradient + stochastic quasi-Newton (e.g., Byrd, Hansen, Nocedal &

Singer 2014)

Iterative sketching for general convex functions

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.

Iterative sketching for general convex functions

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.

Iterative sketching for general convex functions

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, 2015)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, 2015)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, 2015)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, 2015)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Logistic regression: uncorrelated features

0 1 2 3 4 5 6 7 8
10−10

10−5

100

105

Wall clock time

O
pt

im
al

ity
 g

ap

Optimality vs. time

Newton
Grad. desc
Newton Sketch

Sample size n = 500, 000 with d = 5, 000 features

Logistic regression: correlated features

0 1 2 3 4 5 6 7 8
10−10

10−5

100

105

Wall clock time

O
pt

im
al

ity
 g

ap

Optimality vs. time

Newton
Grad. desc
Newton Sketch

Sample size n = 500, 000 with d = 5, 000 features

Consequences for linear programming

◦ LP in standard form:

min
Ax≤b

cTx where A ∈ Rn×d, b ∈ Rn and c ∈ Rd.

◦ interior point methods for LP solving: based on unconstrained sequence

xµ := arg min
x∈Rd

{
µcTx−

n∑

i=1

log(bi − aTi x)
}
.

◦ as parameter µ→ +∞, the path xµ approaches an optimal solution x∗

from the interior

Martin Wainwright (UC Berkeley) February 2017 18 / 24

Consequences for linear programming

◦ LP in standard form:

min
Ax≤b

cTx where A ∈ Rn×d, b ∈ Rn and c ∈ Rd.

◦ interior point methods for LP solving: based on unconstrained sequence

xµ := arg min
x∈Rd

{
µcTx−

n∑

i=1

log(bi − aTi x)
}
.

◦ as parameter µ→ +∞, the path xµ approaches an optimal solution x∗

from the interior

Martin Wainwright (UC Berkeley) February 2017 18 / 24

Consequences for linear programming

◦ LP in standard form:

min
Ax≤b

cTx where A ∈ Rn×d, b ∈ Rn and c ∈ Rd.

◦ interior point methods for LP solving: based on unconstrained sequence

xµ := arg min
x∈Rd

{
µcTx−

n∑

i=1

log(bi − aTi x)
}
.

◦ as parameter µ→ +∞, the path xµ approaches an optimal solution x∗

from the interior

Martin Wainwright (UC Berkeley) February 2017 18 / 24

Standard central path

Exact Newton

∑n

i=1

log(bi − ai
T x)

c

cT x −

min cT x
Ax≤b

µ

Newton sketch follows central path

Exact Newton

Newton Sketch

∑n

i=1

log(bi − ai
T x)

c

cT x −

min cT x
Ax≤b

µ

Linear Programs

Consequence: An LP with n constraints and d variables can be solved in
≈ O(nd) time when n� d.

Martin Wainwright (UC Berkeley) February 2017 20 / 24

Performance compared to CPLEX

Random ensembles of linear programs
Sample size n = 10, 000

Dimensions d = 1, 2, ..., 500

0 50 100 150 200 250 300 350 400 450

d

0

20

40

60

80

100

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

ds
)

CPLEX
Newton Sketch

CODE: eecs.berkeley.edu/~mert/LP.zip

Martin Wainwright (UC Berkeley) February 2017 21 / 24

eecs.berkeley.edu/~mert/LP.zip

Summary

◦ high-dimensional data: challenges and opportunities

◦ optimization at large scales:
• Need fast methods...
• But approximate answers are OK
• randomized algorithms (with strong control) are useful

◦ this talk:

◦ the power of random projection
◦ information-theoretic analysis reveals deficiency of classical sketch
◦ Newton sketch: a fast and randomized Newton-type method

Papers/pre-prints:

◦ Pilanci & W. (2015): Randomized sketches of convex programs with
sharp guarantees, IEEE Transactions on Information Theory

◦ Pilanci & W. (2016a): Iterative Hessian Sketch: Fast and accurate
solution approximation for constrained least-squares, Journal of Machine
Learning Research

◦ Pilanci & W. (2016b): Newton Sketch: A linear-time optimization
algorithm with linear-quadratic convergence. To appear in SIAM Journal
of Optimization.

Summary

◦ high-dimensional data: challenges and opportunities

◦ optimization at large scales:
• Need fast methods...
• But approximate answers are OK
• randomized algorithms (with strong control) are useful

◦ this talk:

◦ the power of random projection
◦ information-theoretic analysis reveals deficiency of classical sketch
◦ Newton sketch: a fast and randomized Newton-type method

Papers/pre-prints:

◦ Pilanci & W. (2015): Randomized sketches of convex programs with
sharp guarantees, IEEE Transactions on Information Theory

◦ Pilanci & W. (2016a): Iterative Hessian Sketch: Fast and accurate
solution approximation for constrained least-squares, Journal of Machine
Learning Research

◦ Pilanci & W. (2016b): Newton Sketch: A linear-time optimization
algorithm with linear-quadratic convergence. To appear in SIAM Journal
of Optimization.

Gaussian width of transformed tangent cone

Gaussian width of set
AK ∩ Sn−1 = {A∆ | ∆ ∈ K, ‖A∆‖2 = 1}

W(AK) := E
[

sup
z∈AK∩Sn−1

〈g, z〉
]

where g ∼ N(0, In×n).

Gaussian widths used in many areas:

◦ Banach space theory: Pisier, 1986, Gordon 1988

◦ Empirical process theory: Ledoux & Talagrand, 1991, Bartlett et al., 2002

◦ Geometric analysis, compressed sensing: Mendelson, Pajor &
Tomczak-Jaegermann, 2007

Gaussian width of transformed tangent cone

Gaussian width of set
AK ∩ Sn−1 = {A∆ | ∆ ∈ K, ‖A∆‖2 = 1}

W(AK) := E
[

sup
z∈AK∩Sn−1

〈g, z〉
]

where g ∼ N(0, In×n).

Gaussian widths used in many areas:

◦ Banach space theory: Pisier, 1986, Gordon 1988

◦ Empirical process theory: Ledoux & Talagrand, 1991, Bartlett et al., 2002

◦ Geometric analysis, compressed sensing: Mendelson, Pajor &
Tomczak-Jaegermann, 2007

Fast Johnson-Lindenstrauss sketch
Step 1: Choose some fixed orthonormal matrix H ∈ Rn×n.
Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=

D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ Rm×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)

Fast Johnson-Lindenstrauss sketch
Step 1: Choose some fixed orthonormal matrix H ∈ Rn×n.
Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=

D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ Rm×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)

